1
|
Yang X, Zong Z, Niu B, Chen H, Wu W, Fang X, Liu R, Gao H, Mu H. Shiitake mushroom-derived extracellular nanovesicles: Preparation, characterization, and inhibition of Caco-2 cells. Food Chem 2025; 463:141339. [PMID: 39316905 DOI: 10.1016/j.foodchem.2024.141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
In this study, Shiitake mushroom-derived extracellular nanovesicles (SMDENVs) were isolated from fresh Shiitake mushrooms by ultracentrifugation and sucrose gradient ultracentrifugation. The morphological characteristics of SMDENVs were investigated via Transmission Electron Microscopy and Laser Scanning Confocal Microscopy. SMDENVs were spherical, hollow, and uniform in size, with an average diameter of 177.6 ± 51.4 nm. Based on the analysis of lipidomics and proteomics, 383 lipids species and 1290 proteins were identified in SMDENVs. Compared with the conventional liposomes, SMDENVs demonstrated higher stability in different environmental conditions. Furthermore, we observed that SMDENVs were cytocompatible and inhibited the proliferation of Caco-2 cells. SMDENVs could be phagocytized by Caco-2 cells in a time-dependent manner. Further, SMDENVs also inhibited the proliferation of Caco-2 cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC50) was 236.2 ± 3.2 μg/mL. Additionally, SMDENVs induced cellular apoptosis by increasing the levels of reactive oxygen species and decreasing the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xueli Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zihao Zong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Honglei Mu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Teng Y, Li Z, Liu J, Teng L, Li H. Proliferation inhibition and apoptosis of liver cancer cells treated by blue light irradiation. Med Oncol 2023; 40:227. [PMID: 37410177 DOI: 10.1007/s12032-023-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Blue light (BL) irradiation has been a potentially efficient treatment for many kinds of tumors. In this study, a BL irradiation (centered at 453 nm in wavelength) was proposed to treat the common human liver cancer cell lines of SMMC-7721 and HepG2, examined by means of flow cytometry, western blot, fluorescence microscope assay. In comparison to control groups, the apoptosis and proliferation inhibition of both BL-treated cells are expressively enhanced by mitochondrial apoptosis. The mechanism of apoptosis is related to the more production of reactive oxygen species (ROS) induced by BL and the corresponding changes in the expression of apoptosis-related Bcl-2, Bax and Bad proteins. In addition, the migration rate of the cancer cells could be reduced after BL irradiation. These results demonstrate that introducing BL irradiation is helpful to establish an effective and low toxicity strategy for the clinical treatment of liver tumors.
Collapse
Affiliation(s)
- Yun Teng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Junsong Liu
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.
| | - Hongdong Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
4
|
Zhou S, Yamada R, Sakamoto K. Low energy multiple blue light-emitting diode light Irradiation promotes melanin synthesis and induces DNA damage in B16F10 melanoma cells. PLoS One 2023; 18:e0281062. [PMID: 36730244 PMCID: PMC9894472 DOI: 10.1371/journal.pone.0281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Visible light is present everywhere in our lives. Widespread use of computers and smartphones has increased the daily time spent in front of screens. What effect does this visible light have on us? Recent studies have shown that short-wavelength blue light (400-450nm) irradiation, similar to UV, inhibits the cell proliferation and differentiation, induces the intracellular oxidative stress, promotes the cell apoptosis and causes some other negative effects. However, it's unusual that directly face to such short-wavelength and high-energy blue light in daily life. Therefore, the effects of blue light with longer wavelength (470nm), lower energy (1, 2 J/cm2) and multiple times (simulated daily use) exposure on cells have been studied in this experiment. In our results, low energy density multiple blue light inhibited cell proliferation and metastatic capability with a weak phototoxicity. Blue light also promoted intracellular reactive oxygen species and caused DNA damage. Furthermore, the melanin synthesis was also promoted by low energy density multiple blue light exposure. Together, these results indicate that longer wavelength and low energy density blue light multiple exposure is still harmful to our cells. Furthermore, prolonged exposure to screens likely induces dull skin through induction of melanin synthesis. These results further mentioned us should paid more attention to controlling the daily use of digital device.
Collapse
Affiliation(s)
- Siqi Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryusuke Yamada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
5
|
The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants (Basel) 2022; 11:antiox11040683. [PMID: 35453368 PMCID: PMC9030579 DOI: 10.3390/antiox11040683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023] Open
Abstract
The cytosolic branched-chain aminotransferase (BCAT1) has received attention for its role in myeloid leukaemia development, where studies indicate metabolic adaptations due to BCAT1 up-regulation. BCAT1, like the mitochondria isoform (BCAT2), shares a conserved CXXC motif ~10 Å from the active site. This CXXC motif has been shown to act as a ‘redox-switch’ in the enzymatic regulation of the BCAT proteins, however the response to reactive oxygen species (ROS) differs between BCAT isoforms. Studies indicate that the BCAT1 CXXC motif is several orders of magnitude less sensitive to the effects of ROS compared with BCAT2. Moreover, estimation of the reduction mid-point potential of BCAT1, indicates that BCAT1 is more reductive in nature and may possess antioxidant properties. Therefore, the aim of this study was to further characterise the BCAT1 CXXC motif and evaluate its role in acute myeloid leukaemia. Our biochemical analyses show that purified wild-type (WT) BCAT1 protein could metabolise H2O2 in vitro, whereas CXXC motif mutant or WT BCAT2 could not, demonstrating for the first time a novel antioxidant role for the BCAT1 CXXC motif. Transformed U937 AML cells over-expressing WT BCAT1, showed lower levels of intracellular ROS compared with cells over-expressing the CXXC motif mutant (CXXS) or Vector Controls, indicating that the BCAT1 CXXC motif may buffer intracellular ROS, impacting on cell proliferation. U937 AML cells over-expressing WT BCAT1 displayed less cellular differentiation, as observed by a reduction of the myeloid markers; CD11b, CD14, CD68, and CD36. This finding suggests a role for the BCAT1 CXXC motif in cell development, which is an important pathological feature of myeloid leukaemia, a disease characterised by a block in myeloid differentiation. Furthermore, WT BCAT1 cells were more resistant to apoptosis compared with CXXS BCAT1 cells, an important observation given the role of ROS in apoptotic signalling and myeloid leukaemia development. Since CD36 has been shown to be Nrf2 regulated, we investigated the expression of the Nrf2 regulated gene, TrxRD1. Our data show that the expression of TrxRD1 was downregulated in transformed U937 AML cells overexpressing WT BCAT1, which taken with the reduction in CD36 implicates less Nrf2 activation. Therefore, this finding may implicate the BCAT1 CXXC motif in wider cellular redox-mediated processes. Altogether, this study provides the first evidence to suggest that the BCAT1 CXXC motif may contribute to the buffering of ROS levels inside AML cells, which may impact ROS-mediated processes in the development of myeloid leukaemia.
Collapse
|
6
|
Zhuang J, Xia L, Zou Z, Yin J. Blue light induces ROS mediated apoptosis and degradation of AML1-ETO oncoprotein in Kasumi-1 cells. Med Oncol 2022; 39:52. [PMID: 35150326 DOI: 10.1007/s12032-022-01650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Light-emitting diode (LED)-based therapies, particularly blue LEDs with wavelengths of 400-500 nm, have shown beneficial results in several cancers, including melanoma, lymphoid cells, and skin tumors. In this study, the cell viability and apoptosis of Kasumi-1 cells treated by blue light (BL) irradiation have been explored. Firstly, BL can specially inhibit the proliferation and promote the apoptosis of Kasumi-1 cells. Furthermore, the apoptosis was triggered by the production of reactive oxygen species and the decline of mitochondrial membrane potential which was regulated by the ratio of Bcl-2(Bcl-xL)/Bax; BL caused the cells' final apoptosis accompanied with the increased cleavage of caspase-3 and poly-ADP-ribose polymerase. Finally, BL induced the degradation of AML1-ETO dependent on the activation of caspase-3. These results are helpful for establishing a low toxicity and high efficiency strategy of BL irradiation for clinical treatment of Kasumi-1 cells.
Collapse
Affiliation(s)
- Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Liping Xia
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zheyu Zou
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juxin Yin
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, 310015, People's Republic of China.
| |
Collapse
|
7
|
The strong inhibitory effect of combining anti-cancer drugs AT406 and rocaglamide with blue LED irradiation on colorectal cancer cells. Photodiagnosis Photodyn Ther 2020; 30:101797. [PMID: 32360851 DOI: 10.1016/j.pdpdt.2020.101797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
There is still no satisfying method to treat colorectal cancer (CRC) currently. Inspired by cocktail therapy, the combination of 465 nm blue LED irradiation and two multi-target anticancer agents AT406 and Rocaglamide has been investigated as an innovative way to treat colorectal cancer cells in vitro. It showed a strong inhibitory effect on colorectal cancer cells, and its side effects on human normal cells are negligible. When applied to HCT116 cells, it can achieve an apoptotic rate up to 95%. It is also seen to significantly inhibit proliferation of HT29 cells. Furthermore, little to no cell inhibition or damage of normal MRC-5 cells were seen after treatment. The combination of blue LED irradiation and two anti-cancer drugs causes apoptosis of colorectal cancer cells by activating the apoptotic pathway, inhibiting autophagy and proliferation pathways as well as the production of reactive oxygen species (ROS).
Collapse
|
8
|
Zhuang J, Yin J, Xu C, Jiang M, Lv S. Diverse autophagy and apoptosis in myeloid leukemia cells induced by 20(s)-GRh2 and blue LED irradiation. RSC Adv 2019; 9:39124-39132. [PMID: 35540666 PMCID: PMC9075934 DOI: 10.1039/c9ra08049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Autophagy is an important mechanism for cell death regulation. To improve the anticancer effect during the treatment of leukemia and promote the apoptosis of leukemic cells, it is important to define the relationship between autophagy and apoptosis. A key bioactive compound in traditional Chinese medicine, 20(s)-Ginsenoside (GRh2), demonstrated an advancement in leukemia treatment. Blue LED therapy (BL) is a physical treatment method that can induce leukemic cell death. In this study, we tested the effect of 20(s)-GRh2, BL, and their combination (BL-GRh2) on the activation of leukemic cell apoptosis and autophagy. Both treatments, whether used individually or simultaneously, induce apoptosis through the induction of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP) and regulated the expression of apoptosis-related genes and proteins. Furthermore, using western blotting to analyze the autophagy markers LC3B and P62, we detected the activation of autophagy. In cells treated with autophagy inhibitor 3-MA, both autophagy and apoptosis were inhibited, either by BL alone or by BL-GRh2. However, apoptosis in 20(s)-GRh2-treated cells was enhanced. In cells treated with apoptosis suppressor Z-VAD-FMK, autophagy was inhibited in the BL and BL-GRh2-treated cells, although it was enhanced in cells treated with 20(s)-GRh2 alone. Moreover, we observed a stronger induction of apoptosis by BL-GRh2 in myeloid leukemia cells. Our data indicate that autophagy induced by different factors can play diverse roles on the same cells. Our results also indicate that the combination of traditional Chinese medicine with physical therapy may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Jianjian Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Juxin Yin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University Hangzhou Zhejiang Province 310058 P. R. China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Mengmeng Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| |
Collapse
|