1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Mensah-Bonsu M, Doss C, Gloster C, Muganda P. Identification and Potential Roles of Human MicroRNAs in Ebola Virus Infection and Disease Pathogenesis. Genes (Basel) 2024; 15:403. [PMID: 38674337 PMCID: PMC11049046 DOI: 10.3390/genes15040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.
Collapse
Affiliation(s)
- Melvin Mensah-Bonsu
- Applied Science and Technology Ph.D. Program, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Christopher Doss
- Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Clay Gloster
- Department of Computer Systems Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Perpetua Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Kakavandi E, Yavarian J, Farzanehpour M, Shayestehpour M. A Review of the Interaction between miRNAs and Ebola Virus. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:210-219. [PMID: 39184819 PMCID: PMC11344561 DOI: 10.22088/ijmcm.bums.13.2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Ebola virus (EBOV) is a life-threatening and virulent pathogen that kills approximately 90 percent of infected individuals. Nowadays, microRNAs (miRNAs) have become a promising option for more efficient screening, diagnosis, monitoring, and therapy of numerous diseases such as cancer, stroke, Alzheimer's, and viral infections. Recent studies have revealed the role of EBOV and host-encoded miRNAs in Ebola virus disease (EVD), opening an avenue for developing novel drugs against EVD and diagnostic panels for EBOV infection. EBOV-encoded miRNAs such as miR-VP-3p and miR-1-5p and anti-EBOV host cell miRNAs such as has-miR-150-3p, has-miR-103b and has-miR-145-3p might be a possible diagnostic biomarker or druggable targets. This paper highlights the importance of viral and cellular miRNAs in EBOV infection and EVD.
Collapse
Affiliation(s)
- Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shayestehpour
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Letafati A, Salahi Ardekani O, Karami H, Soleimani M. Ebola virus disease: A narrative review. Microb Pathog 2023:106213. [PMID: 37355146 DOI: 10.1016/j.micpath.2023.106213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Ebola virus disease (EVD), which is also referred to as Ebola hemorrhagic fever, is a highly contagious and frequently lethal sickness caused by the Ebola virus. In 1976, the disease emerged in two simultaneous outbreaks in Sudan and the Democratic Republic of Congo. Subsequently, it has caused intermittent outbreaks in several African nations. The virus is primarily spread via direct contact with the bodily fluids of an infected individual or animal. EVD is distinguished by symptoms such as fever, fatigue, muscle pain, headache, and hemorrhage. The outbreak of EVD in West Africa in 2014-2016 emphasized the need for effective control and prevention measures. Despite advancements and the identification of new treatments for EVD, the primary approach to treatment continues to be centered around providing supportive care. Early detection and supportive care can enhance the likelihood of survival. This includes intravenous fluids, electrolyte replacement, and treatment of secondary infections. Experimental therapies, for instance, monoclonal antibodies and antiviral drugs, have shown promising results in animal studies and some clinical trials. Some African countries have implemented the use of vaccines developed for EVD, but their effectiveness and long-term safety are still being studied. This article provides an overview of the history, transmission, symptoms, diagnosis, treatment, epidemiology, and Ebola coinfection, as well as highlights the ongoing research efforts to develop effective treatments and vaccines to combat this deadly virus.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Karami
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Soleimani
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
5
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
6
|
Guo Z, Wang Z, Meng S, Zhao Z, Zhang C, Fu Y, Li J, Nie X, Zhang C, Liu L, Lu B, Qian J. Effects of ricin on primary pulmonary alveolar macrophages. J Int Med Res 2019; 47:3763-3777. [PMID: 31156015 PMCID: PMC6726780 DOI: 10.1177/0300060519842959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective We systematically investigated the cytotoxic effects of ricin in primary pulmonary alveolar macrophages (PAMs). Methods Primary PAMs were isolated from BALB/c mice. The cytotoxic effects of ricin were investigated in vitro by optical and transmission electron microscopy, detection of the inflammatory cytokine response, proteomic analysis, and subsequent biological functional analysis. Results Ricin induced shrinkage, apoptosis, vacuolization, and multi-organelle lesions in primary PAMs as demonstrated by optical and transmission electron microscopy. Ricin also induced a pronounced pro-inflammatory cytokine response in primary PAMs, including induction of tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-2, IL-6, IL-12, C-C motif chemokine ligand 2, and C-X-C motif chemokine ligand 2, while the anti-inflammatory cytokines IL-4 and IL-10 were less affected. Proteomic analysis and subsequent biological functional analysis identified eight proteins that were up/downregulated by ricin treatment and which might thus contribute to ricin toxicity. These proteins were involved in various functions, including redox, molecular chaperone, glycolysis, protein translation, and protein degradation functions. Conclusion The results of the present study further our understanding of the pathogenic mechanism of inhalational ricin poisoning.
Collapse
Affiliation(s)
- Zhendong Guo
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Zhongyi Wang
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Shanyu Meng
- 2 Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | | | - Chunmao Zhang
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Yingying Fu
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Jiaming Li
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Xin Nie
- 3 No. 65316 Unit of PLA, Dalian, China
| | - Cheng Zhang
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Linna Liu
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Bing Lu
- 1 Academy of Military Medical Sciences, Beijing, China
| | - Jun Qian
- 1 Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Kämper L, Zierke L, Schmidt ML, Müller A, Wendt L, Brandt J, Hartmann E, Braun S, Holzerland J, Groseth A, Hoenen T. Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins. J Gen Virol 2019; 100:760-772. [DOI: 10.1099/jgv.0.001261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lennart Kämper
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Lukas Zierke
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Marie Luisa Schmidt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Andreas Müller
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Lisa Wendt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Janine Brandt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Eric Hartmann
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Stefanie Braun
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Julia Holzerland
- 2 Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Allison Groseth
- 2 Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Thomas Hoenen
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
8
|
Calu-3 cells are largely resistant to entry driven by filovirus glycoproteins and the entry defect can be rescued by directed expression of DC-SIGN or cathepsin L. Virology 2019; 532:22-29. [PMID: 30999160 PMCID: PMC7112014 DOI: 10.1016/j.virol.2019.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Priming of the viral glycoprotein (GP) by the cellular proteases cathepsin B and L (CatB, CatL) is believed to be essential for cell entry of filoviruses. However, pseudotyping systems that predominantly produce non-filamentous particles have frequently been used to prove this concept. Here, we report that GP-mediated entry of retroviral-, rhabdoviral and filoviral particles depends on CatB/CatL activity and that this effect is cell line-independent. Moreover, we show that the human cell line Calu-3, which expresses low amounts of CatL, is largely resistant to entry driven by diverse filovirus GPs. Finally, we demonstrate that Calu-3 cell entry mediated by certain filovirus GPs can be rescued upon directed expression of CatL or DC-SIGN. Our results identify Calu-3 cells as largely resistant to filovirus GP-driven entry and demonstrate that entry is limited at the stage of virion attachment and GP priming.
Collapse
|