1
|
Su J, Tang M, Liu Q, He J, Wang T, Yin A, Wang J, Li Q, Zhou L, Lei H. Trimethyltin chloride induces oxidative damage and apoptosis in chicken liver. Poult Sci 2024; 103:104217. [PMID: 39190995 PMCID: PMC11396068 DOI: 10.1016/j.psj.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Trimethyltin chloride (TMT) is widespread in the environment and is harmful to both humans and animals. In order to investigate the toxicity mechanism of TMT exposure on chicken liver, We established an in vivo experimental model by giving chickens oral administration of different concentrations of TMT dilution solution and vitro experiments of treating leghorn male hepatoma (LMH) cells for 12 h. The results showed that Albumin (ALB), total protein (TP) and alanine aminotransferase (ALT) in the blood of TMT-treated chickens, as well as ALT and aspartate aminotransferase (AST) in the liver, were dose-dependently increased, and different degrees of necrosis of hepatocytes were observed in histology. Meanwhile, TMT exposure led to a significant decrease in glutathione (GSH) content in chicken liver tissues and LMH cells, what's more a significant increase in malondialdehyde (MDA) content in cell supernatants. The expression of apoptosis-related genes Caspase8, Caspase3 and Caspase9 were increased in chicken liver tissues and LMH cells after treated by TMT, and an increased in the percentage of late apoptosis in LMH cells. This suggests that TMT can cause oxidative stress and apoptosis in chicken livers and cells, resulting in liver injury.
Collapse
Affiliation(s)
- Jianming Su
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Meiwen Tang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Qing Liu
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jian He
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tianjie Wang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Aiyun Yin
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiangping Wang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Qing Li
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Zhou
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hongyu Lei
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Diddi SL, Lohidasan S, S A, Dhapte-Pawar V, Mahadik KR. In-situ polyherbal gel as biomedicine in the management of Alzheimer's disease: Understanding ameliorative potential in Trimethyltin induced neurodegeneration. J Pharmacol Toxicol Methods 2024; 130:107567. [PMID: 39393715 DOI: 10.1016/j.vascn.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Alzheimer's disease (AD), classified as neurodegenerative disorder that progresses over a period of time, is characterized by intracellular neurofibrillary tangles and extracellular amyloid plaques. This present research work was designed to develop a polyherbal gel for the treatment of AD. This research study is aimed to confirm the impact and validation of polyherbal gel on tauopathy and neurodegeneration that had been induced by intraperitoneal trimethyltin (TMT) injection to rats. Polyherbal loaded gel was prepared by cold method, and characterized for gel strength, viscosity, permeation and pH. Subsequently, 5 marker based standardized plant materials of Kalyanka ghrita were incorporated in gellan gum and xanthan gum. Finally, an in-vivo investigation employing rats with TMT-induced neurological disease were used to assess the efficacy of the optimized gel. On day 7, the Wistar rats received intraperitoneal injections of TMT. From day 14 to day 35, the corresponding groups received intranasal administration of polyherbal gel. In addition to the molecular parameters such as brain acetyl cholinesterase activity, BDNF (Rat brain derived neurotropic factor), protein phosphatase 2 A, antioxidant parameters, and oxidative stress markers, the behavioral parameters were also determined. Studies were conducted on the brain's monoamine levels and histology. RESULTS: Higher permeation over the nasal mucosa was demonstrated by the optimized In-situ polyherbal gel. Significant improvement in cognition was observed from the reduced escape latency, longer paths, and increased social or novel object recognition tests post polyherbal gel treatment. A documented HPLC technique helped in optimization and standardization of the polyherbal gel. The polyherbal treatment groups exhibited a considerable rise in the levels of monoamines, including norepinephrine, dopamine, and 5-hydroxy tryptamine. CONCLUSION: According to the current study, treating Alzheimer's disease (AD) with a polyherbal gel formulation may be a viable option for successful therapy.
Collapse
Affiliation(s)
- Sneha Latha Diddi
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Arulmozhi S
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India.
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Kakasaheb R Mahadik
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| |
Collapse
|
3
|
Lee HS, Kim JM, Lee HL, Go MJ, Lee DY, Kim CW, Kim HJ, Heo HJ. Eucommia ulmoides Leaves Alleviate Cognitive Dysfunction in Dextran Sulfate Sodium (DSS)-Induced Colitis Mice through Regulating JNK/TLR4 Signaling Pathway. Int J Mol Sci 2024; 25:4063. [PMID: 38612870 PMCID: PMC11012925 DOI: 10.3390/ijms25074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.
Collapse
Affiliation(s)
- Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea;
| | - Chul-Woo Kim
- Division of special Forest Resources, Department of Forest Bio-Resources, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| |
Collapse
|
4
|
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ. Anti-Amnesia-like Effect of Pinus densiflora Extract by Improving Apoptosis and Neuroinflammation on Trimethyltin-Induced ICR Mice. Int J Mol Sci 2023; 24:14084. [PMID: 37762386 PMCID: PMC10531555 DOI: 10.3390/ijms241814084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aβ accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1β. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| |
Collapse
|
5
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
7
|
Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol 2022; 31:957-970. [PMID: 35345441 PMCID: PMC8943496 DOI: 10.1007/s10068-022-01069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various inflammations, the mechanism for improving inflammation remains unclear. Therefore, the current review article evaluates the physiological activity and various pharmacological actions of catechins and conclude by confirming an improvement effect on the inflammatory response.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
8
|
Xi Y, Li H, Yu M, Li X, Li Y, Hui B, Zeng X, Wang J, Li J. Protective effects of chlorogenic acid on trimethyltin chloride-induced neurobehavioral dysfunctions in mice relying on the gut microbiota. Food Funct 2022; 13:1535-1550. [PMID: 35072194 DOI: 10.1039/d1fo03334d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyltin chloride (TMT) is acknowledged to have potent neurotoxicity. Chlorogenic acid (CGA), the most abundant polyphenol in the human diet, is well-known for its neuroprotective activity. This investigation was performed to determine the effects and mechanisms of CGA on TMT-induced neurobehavioral dysfunctions. Mice received oral administrations of CGA (30 mg kg-1) for 11 days, in which they were intraperitoneally injected with TMT (2.7 mg kg-1) once on the 8th day. The daily intake of CGA significantly alleviated TMT-induced epilepsy-like seizure and cognition impairment, ameliorating hippocampal neuronal degeneration and neuroinflammation. Oral gavage of CGA potentially exerted neuroprotective effects through JNK/c-Jun and TLR4/NFκB pathways. Microbiome analysis revealed that daily consumption of CGA raised the relative abundance of Lactobacillus in TMT-treated mice. SCFAs, the gut microbial metabolites associated with neuroprotection, were increased in the mouse hippocampus following CGA treatment. TMT-induced neurotransmitter disorders were regulated by oral gavage of CGA, especially DL-kynurenine and acetylcholine chloride. Additionally, neurotransmitters in the mouse hippocampus were found to be highly associated with the gut microbiota. Our findings provided research evidence for the neuroprotective effect of CGA on TMT-induced neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Yu Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Meihong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xuejie Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Bowen Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xiangquan Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
9
|
Liu XJ, Wang YQ, Shang SQ, Xu S, Guo M. TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113167. [PMID: 34995909 DOI: 10.1016/j.ecoenv.2022.113167] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Trimethyltin chloride (TMT) is an organotin heat stabilizer that is widely used in the production of plastics, and has strong toxicity. Here, the effect of trimethyltin chloride on mouse kidneys and its related mechanism were studied by taking TMT mouse with drinking water as a model. Histological examination and TUNEL results showed that the trimethyltin chloride group had typical apoptosis and necroptosis characteristics. Therefore, the level of oxidative stress was detected,and the expression of related genes was verified by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot methods. The results showed that oxidative stress was activated (MDA,SOD,CAT,T-AOC), released ROS, activated NF-κB pathway,activated inflammasome (NLRP3,Caspase-1,ASC), and inflammasome-secreted inflammatory factors (IL-1β). The expression of apoptosis (BCL-2, BAX, Caspase-3, Caspase-9) and necroptosis (RIPK1, RIPK33, MLKL, Caspase-8) increased.In addition, HEK293T human embryonic kidney cells were treated with trimethyltin chloride, and the results were similar to the tissue. In conclusion, TMT can induce oxidative stress, activate NF-κB pathway, and induce apoptosis and necroptosis through inflammasomes.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shao-Qian Shang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Yoo SK, Kim JM, Lee U, Kang JY, Park SK, Han HJ, Park HW, Kim HJ, Kim CW, Kim MJ, Heo HJ. Immature Persimmon Suppresses Amyloid Beta (Aβ) Mediated Cognitive Dysfunction via Tau Pathology in ICR Mice. Curr Issues Mol Biol 2021; 43:405-422. [PMID: 34205542 PMCID: PMC8928982 DOI: 10.3390/cimb43010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aβ)1-42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aβ1-42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aβ1-42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3β, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).
Collapse
Affiliation(s)
- Seul-Ki Yoo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Jong-Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Uk Lee
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Jin-Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Seon-Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Hye-Ju Han
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Hyo-Won Park
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Ho-Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| |
Collapse
|
11
|
Shin EJ, Kim JM, Kang JY, Park SK, Han HJ, Kim HJ, Kim CW, Lee U, Heo HJ. Ameliorative effect of persimmon (Diospyros kaki) in cognitively impaired diabetic mice. J Food Biochem 2020; 45:e13581. [PMID: 33326146 DOI: 10.1111/jfbc.13581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The effects of ethanolic extract of Diospyros kaki (EED) on diabetic cognitive impairment were investigated in high-fat diet (HFD)-induced mouse. After HFD was fed to mouse for 16 weeks, EED was administrated to mouse for 4 weeks. EED reduced fasting blood glucose level and improved cognitive and behavioral dysfunction. EED improved serum biomarkers related to lipid and liver damage better than positive control (PC). In addition, EED ameliorated impaired cholinergic system, increased oxidative stress as well as mitochondrial dysfunction compared with HFD group. In the molecular study, EED downregulated the phosphorylation of c-Jun N-terminal kinase (p-JNK), which phosphorylates the serine residue of insulin receptor substrate-1 (IRS-1pSer). Finally, various physiological compounds such as tannin-based ingredients were identified using UPLC-QTOF/MS2 . These results suggest that EED can help improve cognitive impairment caused by HFD. PRACTICAL APPLICATIONS: Recently, cognitive impairment caused by type 2 diabetes mellitus (T2DM) has become a problem. T2DM, mainly derived from HFD, is characterized by hyperglycemia, which is associated with insulin resistance. In this study, EED not only improved hyperglycemia and insulin resistance, but also restored diabetes-related cognitive dysfunction in HFD-induced diabetic mice. Finally, the decrease in cholinergic and antioxidant systems related to cognitive impairment was recovered by consumption of EED via improvement of insulin signaling pathway. Therefore, this study suggests that persimmon (Diospyros kaki) containing diverse physiological compounds has potential and industrial value as a functional food material for cognitive improvement.
Collapse
Affiliation(s)
- Eun Jin Shin
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye Ju Han
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chul-Woo Kim
- Division of Special Forest Products, National Institute of Forest Science, Suwon, Korea
| | - Uk Lee
- Division of Special Forest Products, National Institute of Forest Science, Suwon, Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
12
|
Matcha Improves Metabolic Imbalance-Induced Cognitive Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8882763. [PMID: 33312340 PMCID: PMC7719512 DOI: 10.1155/2020/8882763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
This study was conducted to assess the protective effect of extract of match (EM) on high-fat diet- (HFD-) induced cognitive deficits in male C57BL/6 mice. It was found that EM improved glucose tolerance status by measuring OGTT and IPGTT with HFD-induced mice. EM protected behavioral and memory dysfunction in Y-maze, passive avoidance, and Morris water maze tests. Consumption of EM reduced fat mass, dyslipidemia, and inflammation in adipose tissue. Also, EM ameliorated hepatic and cerebral antioxidant systems. EM improved the cerebral cholinergic system by regulating ACh contents and expression of AChE and ChAT. Also, EM restored mitochondrial function in liver and brain tissue. EM attenuated hepatic inflammatory effect, lipid synthesis, and cholesterol metabolism by regulating the protein expression of TNF-α, TNFR1, p-IRS-1, p-JNK, IL-1β, iNOS, COX-2, HMGCR, PPARγ, and FAS. Finally, EM regulated cognitive function and neuroinflammation in the whole brain, hippocampus, and cerebral cortex by regulating the protein expression of p-JNK, p-Akt, p-tau, Aβ, BDNF, IDE, COX-2, and IL-1β. These findings suggest that EM might be a potential source of functional food to improve metabolic disorder-associated cognitive dysfunction.
Collapse
|
13
|
Patten T, De Biasi M. History repeats itself: Role of characterizing flavors on nicotine use and abuse. Neuropharmacology 2020; 177:108162. [PMID: 32497589 DOI: 10.1016/j.neuropharm.2020.108162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
The popularity of e-cigarettes has skyrocketed in recent years, and most vapers use flavored e-cigarette products. Consumption of flavored e-cigarettes exceeds that of combustible cigarettes and other tobacco products among adolescents, who are particularly vulnerable to becoming nicotine dependent. Flavorings have been used by the tobacco industry since the 17th century, but the use of flavors by the e-cigarette industry to create products with "characterizing" flavors (i.e. flavors other than tobacco or menthol) has sparked a public health debate. This review addresses the possibility that characterizing flavors make nicotine more appealing, rewarding and addictive. It also discusses ways in which preclinical and clinical studies could improve our understanding of the mechanisms by which flavors may alter nicotine reward and reinforcement. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Theresa Patten
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
14
|
Pham HTN, Phan SV, Tran HN, Phi XT, Le XT, Nguyen KM, Fujiwara H, Yoneyama M, Ogita K, Yamaguchi T, Matsumoto K. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol Pharm Bull 2019; 42:1384-1393. [DOI: 10.1248/bpb.b19-00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
15
|
Thabit S, Handoussa H, Roxo M, Cestari de Azevedo B, S E El Sayed N, Wink M. Styphnolobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models. Molecules 2019; 24:E2633. [PMID: 31331055 PMCID: PMC6680879 DOI: 10.3390/molecules24142633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Styphnolobium japonicum (L.) Schott is a popular Asian tree widely used in traditional medicine. The current study explored the potential stress resistance and antioxidant activities of its fruits. Phytochemical profiling of the hydroalcoholic fruit extract was done via high performance liquid chromatography-photodiode array-electrospray ionization-mass/mass (HPLC-PDA-ESI-MS/MS). Twenty four phenolic constituents were tentatively identified in the extract. The Caenorhabditis elegans (C. elegans) nematode model in addition to trimethyltin (TMT)-induced neurotoxicity mouse model were used for in vivo evaluation of its antioxidant properties. The ability of the extract to enhance stress resistance was manifested through increasing survival rate by 44.7% and decreasing basal reactive oxygen species (ROS) levels by 72.3% in C. elegans. In addition, the extract increased the levels of the stress response enzyme superoxide dismutase-3 (Sod-3) by 55.5% and decreased the expression of heat shock protein-16.2 (Hsp-16.2) in nematodes, which had been challenged by juglone, by 21%. Using a mouse model, the extract significantly decreased the expression of the oxidative stress marker malondialdehyde (MDA). Furthermore, an elevation in the levels of the antioxidant marker glutathione (GSH), SOD and heme oxygenase-1 (HO-1) enzymes were observed. Our findings imply that Styphnolobium japonicum has the potential to be used in future studies focusing on diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Sara Thabit
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Heba Handoussa
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mariana Roxo
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Bruna Cestari de Azevedo
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
- Departmento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900 Ribeirão Preto, Brazil
| | - Nesrine S E El Sayed
- Pharmacology and Toxicology department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael Wink
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| |
Collapse
|
16
|
Chronic Alcohol Exposure Induced Neuroapoptosis: Diminishing Effect of Ethyl Acetate Fraction from Aralia elata. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7849876. [PMID: 31210848 PMCID: PMC6532276 DOI: 10.1155/2019/7849876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
An ethyl acetate fraction from Aralia elata (AEEF) was investigated to confirm its neuronal cell protective effect on ethanol-induced cytotoxicity in MC-IXC cells and its ameliorating effect on neurodegeneration in chronic alcohol-induced mice. The neuroprotective effect was examined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assays. As a result, AEEF reduced alcohol-induced cytotoxicity and oxidative stress. To evaluate the improvement of learning, memory ability, and spatial cognition, Y-maze, passive avoidance, and Morris water maze tests were conducted. The AEEF groups showed an alleviation of the decrease in cognitive function in alcohol-treated mice. Then, malondialdehyde (MDA) levels and the superoxide dismutase (SOD) content were measured to evaluate the antioxidant effect of AEEF in the brain tissue. Treatment with AEEF showed a considerable ameliorating effect on biomarkers such as SOD and MDA content in alcohol-induced mice. To assess the cerebral cholinergic system involved in neuronal signaling, acetylcholinesterase (AChE) activity and acetylcholine (ACh) content were measured. The AEEF groups showed increased ACh levels and decreased AChE activities. In addition, AEEF prevented alcohol-induced neuronal apoptosis via improvement of mitochondrial activity, including reactive oxygen species levels, mitochondrial membrane potential, and adenosine triphosphate content. AEEF inhibited apoptotic signals by regulating phosphorylated c-Jun N-terminal kinases (p-JNK), phosphorylated protein kinase B (p-Akt), Bcl-2-associated X protein (BAX), and phosphorylated Tau (p-Tau). Finally, the bioactive compounds of AEEF were identified as caffeoylquinic acid (CQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), and chikusetsusaponin IVa using the UPLC-Q-TOF-MS system.
Collapse
|