1
|
Ehrlich A, Pelli G, Foglia B, Molica F, Kwak BR. Protective role of Pannexin1 in lymphatic endothelial cells in the progression of atherosclerosis in female mice. PLoS One 2024; 19:e0315511. [PMID: 39775604 PMCID: PMC11684638 DOI: 10.1371/journal.pone.0315511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis is a progressive arterial disease arising from imbalanced lipid metabolism and a maladaptive immune response. The lymphatic system ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells to draining lymph nodes, thereby potentially affecting atherogenesis. Endothelial cell-specific deletion of Pannexin1 (Panx1) in apolipoprotein E-deficient (Apoe-/-) mice increased atherosclerosis, suggesting a protective role for Panx1 channels in arterial endothelial function. Here, we investigated the role of Panx1 in lymphatic endothelial cells (LECs) in the initiation and the progression of atherosclerosis. Male or female Prox1-CreERT2+Panx1fl/flApoe-/- and Panx1fl/flApoe-/- mice were fed a high cholesterol diet (HCD) for 6 or 10 weeks. Tamoxifen-induced deletion of Panx1 was performed before or after 4 weeks of HCD. Body weight and serum lipid profiles were determined. The atherosclerotic plaque burden was assessed by Sudan-IV staining on thoracic-abdominal aortas and in aortic roots. Plaque composition was determined by immunohistochemistry. No differences in serum cholesterol, LDL and HDL were observed between genotypes and between sexes after HCD. Bodyweight, serum triglycerides and free fatty acid levels were higher before and after 6 weeks of HCD in male Prox1-CreERT2+Panx1fl/flApoe-/- and control Panx1fl/flApoe-/- mice compared to females of the same genotypes, which was associated with more lipids and inflammatory cells in their atherosclerotic plaques. In contrast, the atherosclerotic plaque burden was higher in female mice. The progression of atherosclerosis in male mice was not different between genotypes. However, female Prox1-CreERT2+Panx1fl/flApoe-/- mice showed enhanced progression of atherosclerosis compared to Panx1fl/flApoe-/- controls of the same sex. In addition, atherosclerotic lesions in female, but not in male, Prox1-CreERT2+Panx1fl/flApoe-/- mice showed T cell enrichment. Altogether, our results reveal differential sex-dependent effects of Panx1 in lymphatic endothelium on the progression of atherosclerosis.
Collapse
Affiliation(s)
- Avigail Ehrlich
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Graziano Pelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernard Foglia
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Ehrlich A, Pelli G, Pick R, Clochard L, Molica F, Kwak BR. Pannexin1 deletion in lymphatic endothelium affects lymphatic function in a sex-dependent manner. Physiol Rep 2024; 12:e16170. [PMID: 39085909 PMCID: PMC11291012 DOI: 10.14814/phy2.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The lymphatic network of capillaries and collecting vessels ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells. Pannexin1 (Panx1) channels allow for the passage of ions and small metabolites between the cytosol and extracellular environment. Panx1 channels regulate the pathophysiological function of several tissues in a sex-dependent manner. Here, we studied the role of Panx1 in lymphatic function, and potential sex-dependent differences therein, in Prox1-CreERT2Panx1fl/fl and Panx1fl/fl control mice. Panx1 expression was higher in lymphatic endothelial cells (LECs) of male mice. Lymphatic vessel morphology was not affected in Prox1-CreERT2Panx1fl/fl male and female mice. Lymphatic drainage was decreased by 25% in male Prox1-CreERT2Panx1fl/fl mice, but was similar in females of both genotypes. Accordingly, only male Prox1-CreERT2Panx1fl/fl mice exhibited tail swelling, pointing to interstitial fluid accumulation in males upon Panx1 deletion in LECs. Moreover, serum triglyceride and free fatty acid levels raised less in Prox1-CreERT2Panx1fl/fl mice of both sexes in an oral lipid tolerance test. Finally, the percentage of migratory dendritic cells arriving in draining lymph nodes was increased in Prox1-CreERT2Panx1fl/fl female mice, but was comparable between male mice of both genotypes. Our results point to a LEC-specific role for Panx1 in the functions of the lymphatic system.
Collapse
Affiliation(s)
- Avigail Ehrlich
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Graziano Pelli
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Robert Pick
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Linda Clochard
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Filippo Molica
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology (PATIM)University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Fu S, Liu S, Li J, Dong Q, Fu Y, Luo R, Sun Y, Tian X, Liu W, Zong B, Ye C, Lu Q, Qiu Y, Guo L. Baicalin and probenecid protect against Glaesserella parasuis challenge in a piglet model. Vet Res 2024; 55:96. [PMID: 39075542 PMCID: PMC11285411 DOI: 10.1186/s13567-024-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Glaesserella parasuis (G. parasuis) induces vascular damage and systemic inflammation. However, the mechanism by which it causes vascular damage is currently unclear. Baicalin has important anti-inflammatory, antibacterial and immunomodulatory functions. In this study, we explored the ability of baicalin and probenecid to protect against G. parasuis challenge in a piglet model. Sixty piglets were randomly divided into a control group; an infection group; a probenecid group; and 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups. The probenecid group and the 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups were injected intramuscularly with 20 mg/kg body weight (BW) probenecid and 25 mg/kg BW, 50 mg/kg BW and 100 mg/kg BW baicalin, respectively. All piglets except those from the control group were injected intraperitoneally with 1 × 108 CFU of G. parasuis. The control group was injected intraperitoneally with TSB. The results showed baicalin and probenecid protected piglets against G. parasuis challenge, improved body weight and decreased temperature changes in piglets. Baicalin and probenecid attenuated IL-1β, IL-10, IL-18, TNF-α and IFN-γ mRNA levels in the blood for 48 h, inhibited the production of the nucleosides ATP, ADP, AMP and UMP from 24 to 72 h, reduced Panx-1/P2Y6/P2X7 expression, weakened NF-kB, AP-1, NLRP3/Caspase-1 and ROCK/MLCK/MLC signalling activation, and upregulated VE-cadherin expression in the blood vessels of piglets challenged with G. parasuis. Baicalin and probenecid alleviated pathological tissue damage in piglets induced by G. parasuis. Our results might provide a promising strategy to control and treat G. parasuis infection in the clinical setting.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Siyu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Jingyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Qiaoli Dong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Yunjian Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Ronghui Luo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Yamin Sun
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China.
| |
Collapse
|
4
|
Feng X, Du M, Zhang Y, Ding J, Wang Y, Liu P. The Role of Lymphangiogenesis in Coronary Atherosclerosis. Lymphat Res Biol 2021; 20:290-301. [PMID: 34714136 DOI: 10.1089/lrb.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lymphatic circulation, a one-way channel system independent of blood circulation, collects interstitial fluid in a blind-end way. Existing widely in various organs and tissues, lymphatic vessels play important roles in maintaining tissue fluid homeostasis, regulating immune function, and promoting lipid transport. Recent studies have shown clear evidence that lymphangiogenesis has a strong mutual effect on coronary atherosclerosis (AS). In this study, we focus on this topic, especially in the aspects of relevant ligand/receptor, inflammation, and adipose metabolism. For the moment, however, the role of lymphangiogenesis and remodeling in coronary AS still remains controversial. The studies of our group and accumulating published evidence show that the pathological remodeling of lymphatic vessels in coronary AS may have a negative effect, but normal functional lymphangiogenesis is probably beneficial to the regression of coronary AS. Thus, the conclusion of this review is that lymphatic vessel function rather than its quantity determines its influence in AS, which needs more evidence to support.
Collapse
Affiliation(s)
- Xiaoteng Feng
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ding
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Ocansey DKW, Pei B, Xu X, Zhang L, Olovo CV, Mao F. Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. J Transl Med 2021; 19:254. [PMID: 34112196 PMCID: PMC8190852 DOI: 10.1186/s12967-021-02922-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Lymphatic Connexins and Pannexins in Health and Disease. Int J Mol Sci 2021; 22:ijms22115734. [PMID: 34072103 PMCID: PMC8199429 DOI: 10.3390/ijms22115734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.
Collapse
|
7
|
Bhat EA, Sajjad N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol Cell Biochem 2021; 476:1529-1540. [PMID: 33394272 DOI: 10.1007/s11010-020-04002-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5'-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure-function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| |
Collapse
|
8
|
Im GB, Kim SW, Bhang SH. Fortifying the angiogenic efficacy of adipose derived stem cell spheroids using spheroid compaction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Zheng Z, Zeng YZ, Ren K, Zhu X, Tan Y, Li Y, Li Q, Yi GH. S1P promotes inflammation-induced tube formation by HLECs via the S1PR1/NF-κB pathway. Int Immunopharmacol 2018; 66:224-235. [PMID: 30476824 DOI: 10.1016/j.intimp.2018.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Inflammation-induced lymphangiogenesis is a widely accepted concept. However, most of the inflammatory factors and their related mechanisms have not been clarified. It has been reported that sphingosine-1-phosphate (S1P) is not only closely related to the chronic inflammatory process but also affects angiogenesis. Therefore, we investigated the inflammatory effects of S1P on human lymphatic endothelial cells (HLECs). Our results showed that S1P promotes tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion in HLECs. We also confirmed that S1P-stimulated TNF-α and IL-1β secretion is mediated through S1P receptor 1 (S1PR1). Using TNF-α siRNA and IL-1β siRNA, we found that TNF-α and IL-1β play essential roles in S1P-induced HLEC proliferation, migration, and tube formation. S1P induces phosphorylation of NF-κB p65 and activation of NF-κB nuclear translocation. A S1PR1 antagonist (W146) and NF-κB inhibitor (BAY11-7082) inhibited S1P-induced TNF-α and IL-1β secretion and prevented NF-κB nuclear translocation. Taken together, the results demonstrated for the first time that S1P promotes the secretion of TNF-α and IL-1β in HLECs via S1PR1-mediated NF-κB signaling pathways, thus affecting lymphangiogenesis. The study provides a new strategy for finding treatments for lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yong-Zhi Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Xiao Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Ying Tan
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yi Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Qian Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
An Overview of the Focus of the International Gap Junction Conference 2017 and Future Perspectives. Int J Mol Sci 2018; 19:ijms19092823. [PMID: 30231591 PMCID: PMC6164644 DOI: 10.3390/ijms19092823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
This Special Issue relates to the 18th biannual International Gap Junction Conference (IGJC2017), held at the Crowne Plaza Hotel, Glasgow, U.K., from the 29 July⁻2 August 2017 [...].
Collapse
|