1
|
Patel S, Shah N, D’Mello B, Lee A, Werstuck GH. Myeloid GSK3α Deficiency Reduces Lesional Inflammation and Neovascularization during Atherosclerotic Progression. Int J Mol Sci 2024; 25:10897. [PMID: 39456687 PMCID: PMC11507289 DOI: 10.3390/ijms252010897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The molecular mechanisms by which cardiovascular risk factors promote the development of atherosclerosis are poorly understood. We have recently shown that genetic ablation of myeloid glycogen synthase kinase (GSK)-3α attenuates atherosclerotic lesion development in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. However, the precise contributions of GSK3α/β in atherogenesis are not known. The aim of this study is to investigate the effect of GSK3α and/or β deficiency on lesional inflammation and plaque vascularization. Five-week-old female Ldlr-/- mice were fed a high-fat diet for 10 weeks to establish atherosclerotic lesions. Mice were harvested at 15 weeks of age and atherosclerotic lesions were characterized. The results indicate that, in addition to significantly reducing plaque volume, GSK3α-deficiency decreases inflammation, reduces vasa vasorum density at the aortic sinus, and reduces plasma c-reactive protein (CRP) levels. GSK3β-deficiency is associated with decreased plasma CRP levels but does not affect lesional inflammation or vascularization. These results suggest GSK3α may be an applicable target for the development of novel anti-atherogenic therapies.
Collapse
Affiliation(s)
- Sarvatit Patel
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada; (S.P.); (N.S.); (A.L.)
| | - Nisarg Shah
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada; (S.P.); (N.S.); (A.L.)
| | - Brooke D’Mello
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada; (S.P.); (N.S.); (A.L.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anson Lee
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada; (S.P.); (N.S.); (A.L.)
| | - Geoff H. Werstuck
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2, Canada; (S.P.); (N.S.); (A.L.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
2
|
Cheng Q, Sun J, Zhong H, Wang Z, Liu C, Zhou S, Deng J. Research trends in lipid-lowering therapies for coronary heart disease combined with hyperlipidemia: a bibliometric study and visual analysis. Front Pharmacol 2024; 15:1393333. [PMID: 38828451 PMCID: PMC11140088 DOI: 10.3389/fphar.2024.1393333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Background Cardiovascular disease (CVD) poses a significant global health and economic challenge, with atherosclerosis being a primary cause. Over the past 40 years, substantial research has been conducted into the prevention and reversal of atherosclerosis, resulting in the development of lipid-lowering agents such as statins and fibrates. Despite the extensive literature and formulation of numerous therapeutic guidelines in this domain, a comprehensive bibliometric analysis of the current research landscape and trends has not been performed. This study aimed to elucidate the evolution and milestones of research into lipid-lowering treatments for coronary heart disease (CHD) in conjunction with hyperlipidemia through bibliometric analysis, offering insights into future directions for treatment strategies. Methods This study examined publications from 1986 to 2023 retrieved from the Web of Science database (Core Collection). Utilizing tools such as VOSviewer, Pajek, and CiteSpace, we analyzed publication and citation numbers, H-indexes, contributions by countries and institutions, authorship, journal sources, and keyword usage to uncover research trajectories and areas of focus. Results Our analysis of 587 publications revealed a recent surge in research output, particularly post-2003. The American Journal of Cardiology published the highest number of studies, with 40 articles, whereas Circulation received the highest number of citations (6,266). Key contributors included the United States, Japan, and China, with the United States leading in citation numbers and the H-index. Harvard University and Leiden University emerged as pivotal institutions, and Professors J. Wouter Jukema and Robert P. Giugliano were identified as leading experts. Keyword analysis disclosed five thematic clusters, indicating a shift in research towards new drug combinations and strategies, signaling future research directions. Conclusion The last 4 decades have seen a notable rise in publications on lipid-lowering therapies for CHD and hyperlipidemia, with the United States retaining world-leading status. The increase in international collaboration aids the shift towards research into innovative lipid-lowering agents and therapeutic approaches. PCSK9 inhibitors and innovative combination therapies, including antisense oligonucleotides and angiopoietin-like protein 3 inhibitors, provide avenues for future research, intending to maximize the safety and efficacy of treatment approaches.
Collapse
Affiliation(s)
- Quankai Cheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Sun
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haicheng Zhong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziming Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sheng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Derler M, Teubenbacher T, Carapuig A, Nieswandt B, Fessler J, Kolb D, Mussbacher M. Platelets induce endoplasmic reticulum stress in macrophages in vitro. J Thromb Haemost 2024; 22:1475-1488. [PMID: 38278417 DOI: 10.1016/j.jtha.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a key feature of lipid-laden macrophages and contributes to the development of atherosclerotic plaques. Blood platelets are known to interact with macrophages and fine-tune effector functions such as inflammasome activation and phagocytosis. However, the effect of platelets on ER stress induction is unknown. OBJECTIVES The objective of this study is to elucidate the potential of platelets in regulating ER stress in macrophages in vitro. METHODS Bone marrow-derived macrophages and RAW 264.7 cells were incubated with isolated murine platelets, and ER stress and inflammation markers were determined by reverse transcription-quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. ER morphology was investigated by electron microscopy. Cell viability, lipid accumulation, and activation were measured by flow cytometry. To gain mechanistic insights, coincubation experiments were performed with platelet decoys/releasates as well as lipopolysaccharide, blocking antibodies, and TLR4 inhibitors. RESULTS Coincubation of platelets and macrophages led to elevated levels of ER stress markers (BIP, IRE1α, CHOP, and XBP1 splicing) in murine and human macrophages, which led to a pronounced enlargement of the ER. Macrophage ER stress was accompanied by increased release of proinflammatory cytokines and intracellular lipid accumulation, but not cell death. Platelet decoys, but not platelet releasates or lysate from other cells, phenocopied the effect of platelets. Blocking TLR4 inhibited inflammatory activation of macrophages but did not affect ER stress induction by platelet coincubation. CONCLUSION To our knowledge, this study is the first to demonstrate that platelets induce ER stress and unfolded protein response in macrophages by heat-sensitive membrane proteins, independent of inflammatory activation of macrophages.
Collapse
Affiliation(s)
- Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Theresa Teubenbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Anna Carapuig
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Johannes Fessler
- Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria; Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
4
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Niloofar Deravi,
| |
Collapse
|
5
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
6
|
Yang J, Hao J, Lin Y, Guo Y, Liao K, Yang M, Cheng H, Yang M, Chen K. Profile and Functional Prediction of Plasma Exosome-Derived CircRNAs From Acute Ischemic Stroke Patients. Front Genet 2022; 13:810974. [PMID: 35360855 PMCID: PMC8963851 DOI: 10.3389/fgene.2022.810974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2—two RNA-binding proteins (RBPs)—and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yijia Guo
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Ke Liao
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hang Cheng
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
- *Correspondence: Kejie Chen,
| |
Collapse
|
7
|
Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021; 14:1717-1730. [PMID: 33986607 PMCID: PMC8111165 DOI: 10.2147/jir.s300806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. Materials and Methods For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/β-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. Results Constitutive GSK3β and PKCβ expression and GSK3α/β-Ser21/9 and PKCα/βII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/β-knockdown modestly increased, whereas GSK3α/β-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/β-Ser176/180 phosphorylation were not affected. Moreover, PKCβ-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. Conclusion Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 – either pathophysiologically or pharmacologically induced – may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Mareike Diekmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
8
|
Marx C, Schaarschmidt MU, Kirkpatrick J, Marx-Blümel L, Halilovic M, Westermann M, Hoelzer D, Meyer FB, Geng Y, Buder K, Schadwinkel HM, Siniuk K, Becker S, Thierbach R, Beck JF, Sonnemann J, Wang ZQ. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing's sarcoma cells. Cell Biosci 2021; 11:57. [PMID: 33743824 PMCID: PMC7981928 DOI: 10.1186/s13578-021-00571-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ewing's sarcoma is an aggressive childhood malignancy whose outcome has not substantially improved over the last two decades. In this study, combination treatments of the HSP90 inhibitor AUY922 with either the ATR inhibitor VE821 or the ATM inhibitor KU55933 were investigated for their effectiveness in Ewing's sarcoma cells. METHODS Effects were determined in p53 wild-type and p53 null Ewing's sarcoma cell lines by flow cytometric analyses of cell death, mitochondrial depolarization and cell-cycle distribution as well as fluorescence and transmission electron microscopy. They were molecularly characterized by gene and protein expression profiling, and by quantitative whole proteome analysis. RESULTS AUY922 alone induced DNA damage, apoptosis and ER stress, while reducing the abundance of DNA repair proteins. The combination of AUY922 with VE821 led to strong apoptosis induction independent of the cellular p53 status, yet based on different molecular mechanisms. p53 wild-type cells activated pro-apoptotic gene transcription and underwent mitochondria-mediated apoptosis, while p53 null cells accumulated higher levels of DNA damage, ER stress and autophagy, eventually leading to apoptosis. Impaired PI3K/AKT/mTOR signaling further contributed to the antineoplastic combination effects of AUY922 and VE821. In contrast, the combination of AUY922 with KU55933 did not produce a cooperative effect. CONCLUSION Our study reveals that HSP90 and ATR inhibitor combination treatment may be an effective therapeutic approach for Ewing's sarcoma irrespective of the p53 status.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc U Schaarschmidt
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Francis Crick Institute, London, UK
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Melisa Halilovic
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Felix B Meyer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Yibo Geng
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Katrin Buder
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Hauke M Schadwinkel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sabine Becker
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - James F Beck
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany. .,Research Center Lobeda, Jena University Hospital, Jena, Germany. .,Klinik Für Kinder- Und Jugendmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Zhao-Qi Wang
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
9
|
Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA, Orekhov AN. Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response. Biomedicines 2020; 8:biomedicines8070210. [PMID: 32668733 PMCID: PMC7400097 DOI: 10.3390/biomedicines8070210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
The endoplasmic reticulum (ER) stress is an important event in the pathogenesis of different human disorders, including atherosclerosis. ER stress leads to disturbance of cellular homeostasis, apoptosis, and in the case of macrophages, to foam cell formation and pro-inflammatory cytokines production. In atherosclerosis, several cell types can be affected by ER stress, including endothelial cells, vascular smooth muscular cells, and macrophages. Modified low-density lipoproteins (LDL) and cytokines, in turn, can provoke ER stress through different processes. The signaling cascades involved in ER stress initiation are complex and linked to other cellular processes, such as lysosomal biogenesis and functioning, autophagy, mitochondrial homeostasis, and energy production. In this review, we discuss the underlying mechanisms of ER stress formation and the interplay of lipid accumulation and pro-inflammatory response. We will specifically focus on macrophages, which are the key players in maintaining chronic inflammatory milieu in atherosclerotic lesions, and also a major source of lipid-accumulating foam cells.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Correspondence: (V.N.S.); (E.A.I.)
| | - Victoria A. Khotina
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Mariam Bagheri Ekta
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
| | - Ekaterina A. Ivanova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (V.N.S.); (E.A.I.)
| | - Igor A. Sobenin
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Institute of Experimental Cardiology, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| |
Collapse
|
10
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
He Z, Du X, Wu Y, Hua L, Wan L, Yan N. Simvastatin promotes endothelial dysfunction by activating the Wnt/β‑catenin pathway under oxidative stress. Int J Mol Med 2019; 44:1289-1298. [PMID: 31432100 PMCID: PMC6713427 DOI: 10.3892/ijmm.2019.4310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (ED) plays a primary role in its occurrence and development. Simvastatin is a lipid‑lowering drug, which is commonly used to prevent or treat risk factors of cardiovascular diseases with a significant anti‑atherogenic effect. However, its impact on endothelial cells under conditions of oxidative stress and broader mechanisms of action remain unclear. The present study evaluated the effect of simvastatin on human umbilical vein endothelial cells (HUVECs) under oxidative stress with H2O2, and the associated mechanisms. At a high dose (1 µM), simvastatin exacerbated H2O2‑induced endothelial cell dysfunction. Moreover, inhibition of the Wnt/β‑catenin pathway by salinomycin significantly suppressed the simvastatin‑associated HUVEC dysfunction. Western blot analysis further demonstrated that simvastatin promoted the phosphorylation of low‑density lipoprotein receptor‑related protein 6 (LRP6) and activated the Wnt/β‑catenin pathway. Simvastatin also activated endoplasmic reticulum (ER) stress, which was reversed by salinomycin treatment. Based on these results, it was hypothesized that simvastatin may promote ER stress by facilitating LRP6 phosphorylation and the subsequent activation of the Wnt/β‑catenin pathway, thereby enhancing H2O2‑induced ED. Therefore, high‑dose simvastatin treatment could have potential toxic side effects, indicating the need for close clinical management, monitoring and patient selection.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyue Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Hua L, Wu N, Zhao R, He X, Liu Q, Li X, He Z, Yu L, Yan N. Sphingomyelin Synthase 2 Promotes Endothelial Dysfunction by Inducing Endoplasmic Reticulum Stress. Int J Mol Sci 2019; 20:ijms20122861. [PMID: 31212751 PMCID: PMC6627305 DOI: 10.3390/ijms20122861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction (ED) is an important contributor to atherosclerotic cardiovascular disease. Our previous study demonstrated that sphingomyelin synthase 2 (SMS2) promotes ED. Moreover, endoplasmic reticulum (ER) stress can lead to ED. However, whether there is a correlation between SMS2 and ER stress is unclear. To examine their correlation and determine the detailed mechanism of this process, we constructed a human umbilical vein endothelial cell (HUVEC) model with SMS2 overexpression. These cells were treated with 4-PBA or simvastatin and with LiCl and salinomycin alone. The results showed that SMS2 can promote the phosphorylation of lipoprotein receptor-related protein 6 (LRP6) and activate the Wnt/β-catenin pathway and that activation or inhibition of the Wnt/β-catenin pathway can induce or block ER stress, respectively. However, inhibition of ER stress by 4-PBA can decrease ER stress and ED. Furthermore, when the biosynthesis of cholesterol is inhibited by simvastatin, the reduction in intracellular cholesterol coincides with a decrease in ER stress and ED. Collectively, our results demonstrate that SMS2 can activate the Wnt/β-catenin pathway and promote intracellular cholesterol accumulation, both of which can contribute to the induction of ER stress and finally lead to ED.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Ruilin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xiatian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Lehan Yu
- School of Basic Medical Experiments Center, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
13
|
He Z, He X, Liu M, Hua L, Wang T, Liu Q, Chen L, Yan N. Simvastatin Attenuates H 2O 2-Induced Endothelial Cell Dysfunction by Reducing Endoplasmic Reticulum Stress. Molecules 2019; 24:molecules24091782. [PMID: 31071981 PMCID: PMC6539125 DOI: 10.3390/molecules24091782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease, whilst endothelial dysfunction (ED) plays a primary role in the occurrence and development of atherosclerosis. Simvastatin has been shown to possess significant anti-atherosclerosis activity. In this study, we evaluated the protective effect of simvastatin on endothelial cells under oxidative stress and elucidated its underlying mechanisms. Simvastatin was found to attenuate H2O2-induced human umbilical vein endothelial cells (HUVECs) dysfunction and inhibit the Wnt/β-catenin pathway; however, when this pathway was activated by lithium chloride, endothelial dysfunction was clearly enhanced. Further investigation revealed that simvastatin did not alter the expression or phosphorylation of LRP6, but reduced intracellular cholesterol deposition and inhibited endoplasmic reticulum (ER) stress. Inducing ER stress with tunicamycin activated the Wnt/β-catenin pathway, whereas reducing ER stress with 4-phenylbutyric acid inhibited it. We hypothesize that simvastatin does not affect transmembrane signal transduction in the Wnt/β-catenin pathway, but inhibits ER stress by reducing intracellular cholesterol accumulation, which blocks intracellular signal transduction in the Wnt/β-catenin pathway and ameliorates endothelial dysfunction.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Menghan Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| |
Collapse
|
14
|
M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment. Neural Plast 2019; 2019:6724903. [PMID: 30923552 PMCID: PMC6409015 DOI: 10.1155/2019/6724903] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammation course, which could induce life-threatening diseases such as stroke and myocardial infarction. Optimal medical treatments for atherosclerotic risk factors with current antihypertensive and lipid-lowering drugs (for example, statins) are widely used in clinical practice. However, many patients with established disease still continue to have recurrent cardiovascular events in spite of treatment with a state-of-the-art therapy. Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality worldwide. Hence, current treatment of atherosclerosis is still far from being satisfactory. Recently, M2 macrophages have been found associated with atherosclerosis regression. The M2 phenotype can secrete anti-inflammatory factors such as IL-10 and TGF-β, promote tissue remodeling and repairing through collagen formation, and clear dying cells and debris by efferocytosis. Therefore, modulators targeting macrophages' polarization to the M2 phenotype could be another promising treatment strategy for atherosclerosis. Two main signaling pathways, the Akt/mTORC/LXR pathway and the JAK/STAT6 pathway, are found playing important roles in M2 polarization. In addition, researchers have reported several potential approaches to modulate M2 polarization. Inhibiting or activating some kinds of enzymes, affecting transcription factors, or acting on several membrane receptors could regulate the polarization of the M2 phenotype. Besides, biomolecules, for example vitamin D, were found to affect the process of M2 polarization. Pomegranate juice could promote M2 polarization via unclear mechanism. In this review, we will discuss how M2 macrophages affect atherosclerosis regression, signal transduction in M2 polarization, and outline potential targets and compounds that affect M2 polarization, thus controlling the progress of atherosclerosis.
Collapse
|
15
|
Radiosynthesis and evaluation of [ 11C]CMP, a high affinity GSK3 ligand. Bioorg Med Chem Lett 2019; 29:778-781. [PMID: 30709652 DOI: 10.1016/j.bmcl.2019.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022]
Abstract
Dysfunction of GSK3 is implicated in the etiology of many brain, inflammatory, cardiac diseases, and cancer. PET imaging would enable in vivo detection and quantification of GSK3 and can impact the choice of therapy, allow non-invasive monitoring of disease progression and treatment effects. In this report, the synthesis and evaluation of a high affinity GSK3 ligand, [11C]2-(cyclopropanecarboxamido)-N-(4-methoxypyridin-3-yl)isonicotinamide, ([11C]CMP, (3), (IC50 = 3.4 nM, LogP = 1.1) is described. [11C]CMP was synthesized in 25 ± 5% yield by radiomethylating the corresponding phenolate using [11C]CH3I. The radioligand exhibited modest uptake in U251 human glioblastoma cell lines with ∼50% specific binding. MicroPET studies in rats indicated negligible blood-brain barrier (BBB) penetration of [11C]CMP, despite its high affinity and suitable logP value for BBB penetration. However, administration of cyclosporine prior to [11C]CMP injection showed significant improvement in brain radioactivity uptake and the tracer binding. This finding indicates that [11C]CMP might be a P-gp efflux substrate and therefore has some limitations for routine in vivo PET evaluations in brain.
Collapse
|