1
|
Yi Q, Zhao Y, Xia R, Wei Q, Chao F, Zhang R, Bian P, Lv L. TRIM29 hypermethylation drives esophageal cancer progression via suppression of ZNF750. Cell Death Discov 2023; 9:191. [PMID: 37365152 DOI: 10.1038/s41420-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer (ESCA) is the seventh most frequent and deadly neoplasm. Due to the lack of early diagnosis and high invasion/metastasis, the prognosis of ESCA remains very poor. Herein, we identify skin-related signatures as the most deficient signatures in invasive ESCA, which are regulated by the transcription factor ZNF750. Of note, we find that TRIM29 level strongly correlated with the expression of many genes in the skin-related signatures, including ZNF750. TRIM29 is significantly down-regulated due to hypermethylation of its promoter in both ESCA and precancerous lesions compared to normal tissues. Low TRIM29 expression and high methylation levels of its promoter are associated with malignant progression and poor clinical outcomes in ESCA patients. Functionally, TRIM29 overexpression markedly hinders proliferation, migration, invasion, and epithelial-mesenchymal transition of esophageal cancer cells, whereas opposing results are observed when TRIM29 is silenced in vitro. In addition, TRIM29 inhibits metastasis in vivo. Mechanistically, TRIM29 downregulation suppresses the expression of the tumor suppressor ZNF750 by activating the STAT3 signaling pathway. Overall, our study demonstrates that TRIM29 expression and its promoter methylation status could be potential early diagnostic and prognostic markers. It highlights the role of the TRIM29-ZNF750 signaling axis in modulating tumorigenesis and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of education training, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ran Xia
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, Anhui, China
| | - Po Bian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
| | - Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
| |
Collapse
|
2
|
He Z, Song B, Zhu M, Liu J. Comprehensive pan-cancer analysis of STAT3 as a prognostic and immunological biomarker. Sci Rep 2023; 13:5069. [PMID: 36977736 PMCID: PMC10050087 DOI: 10.1038/s41598-023-31226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous studies have indicated that STAT3 plays a key role in promoting oncogenesis and it is considered a potential therapeutic target for cancer treatment; however, there are no reports on STAT3 using pan-cancer analysis. Therefore, it is important to investigate the role of STAT3 in different types of tumors using pan-cancer analysis. In the present study, we used multiple databases to comprehensively analyze the relationship between STAT3 expression and prognosis, different stages of patients with cancer, investigate the clinical value of STAT3 in predicting prognosis, and the relationship between STAT3 genetic alteration and prognosis, drug sensitivity, and STAT3 expression, to determine whether STAT3 participates in tumor immunity, to provide a rationale for STAT3 as a treatment target for a broad-spectrum malignancies. Our results indicate that STAT3 can serve as a prognostic, sensitivity prediction biomarker and a target for immunotherapy, which has been of great value for pan-cancer treatment. Overall, we found that STAT3 significantly predicted cancer prognosis, drug resistance, and immunotherapy, providing a rationale for further experimental studies.
Collapse
Affiliation(s)
- Zhibo He
- The School of Foreign Languages, Jiujiang University, Jiujiang, China
| | - Biao Song
- Medical School, Jiujiang University, Jiujiang, China
| | - Manling Zhu
- Medical School, Jiujiang University, Jiujiang, China
| | - Jun Liu
- Medical School, Jiujiang University, Jiujiang, China.
- Laboratory of Precision Preventive Medicine, Jiujiang University, Jiujiang, China.
| |
Collapse
|
3
|
PD-1 blockade enhances chemotherapy toxicity in oesophageal adenocarcinoma. Sci Rep 2022; 12:3259. [PMID: 35228614 PMCID: PMC8885636 DOI: 10.1038/s41598-022-07228-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy upregulates immune checkpoint (IC) expression on the surface of tumour cells and IC-intrinsic signalling confers a survival advantage against chemotherapy in several cancer-types including oesophageal adenocarcinoma (OAC). However, the signalling pathways mediating chemotherapy-induced IC upregulation and the mechanisms employed by ICs to protect OAC cells against chemotherapy remain unknown. Longitudinal profiling revealed that FLOT-induced IC upregulation on OE33 OAC cells was sustained for up to 3 weeks post-treatment, returning to baseline upon complete tumour cell recovery. Pro-survival MEK signalling mediated FLOT-induced upregulation of PD-L1, TIM-3, LAG-3 and A2aR on OAC cells promoting a more immune-resistant phenotype. Single agent PD-1, PD-L1 and A2aR blockade decreased OAC cell viability, proliferation and mediated apoptosis. Mechanistic insights demonstrated that blockade of the PD-1 axis decreased stem-like marker ALDH and expression of DNA repair genes. Importantly, combining single agent PD-1, PD-L1 and A2aR blockade with FLOT enhanced cytotoxicity in OAC cells. These findings reveal novel mechanistic insights into the immune-independent functions of IC-intrinsic signalling in OAC cells with important clinical implications for boosting the efficacy of the first-line FLOT chemotherapy regimen in OAC in combination with ICB, to not only boost anti-tumour immunity but also to suppress IC-mediated promotion of key hallmarks of cancer that drive tumour progression.
Collapse
|
4
|
Zheng JM, Zhou HX, Yu HY, Xia YH, Yu QX, Qu HS, Bao JQ. By Increasing the Expression and Activation of STAT3, Sustained C5a Stimulation Increases the Proliferation, Migration, and Invasion of RCC Cells and Promotes the Growth of Transgrafted Tumors. Cancer Manag Res 2021; 13:7607-7621. [PMID: 34675657 PMCID: PMC8500505 DOI: 10.2147/cmar.s326352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Contradictive results about the direct role of C5a/C5aR1 axis in different cancer cells have been reported. The direct effect of C5a on human renal cell carcinoma (RCC) cells and the underlying mechanism are not clear. The aim of this study is to investigate the role of C5a/C5aR1 axis in RCC cells and its working mechanism. Methods RCC cells were infected with lentivirus Lenti-C5a, which was designed to over-express secretory C5a in the cells, or directly treated with recombinant C5a, the influence of these treatments in the cells and the underlying mechanism were explored. Results Transfection of RCC cells with Lenti-C5a markedly increased the production of C5a and significantly increased the proliferation, migration, and invasion of RCC cells, but direct addition of C5a to the cell culture medium had no such effects though it indeed induced a transient intracellular calcium rise. RCC cells were found to express carboxypeptidase D and M, which reportedly to inactivate C5a. Also, the RCC cells stably transfected with Lenti-C5a produced larger transgrafted tumors in nude mice compared with the non-transfected or control virus transfected cells. In addition, over-expression of C5a significantly increased the expression and phosphorylation of STAT3 as well as the phosphorylated JNK level. Furthermore, the effect of C5a over-expression on RCC cells' proliferation, migration, and invasion could be blocked by Stattic, a STAT3-specific inhibitor. Conclusion Chronic over-activation of C5a/C5aR1 axis could directly increase RCC cells' proliferation, migration, and invasion and thus contribute directly to the progression of the disease. Over-activation of STAT3 pathway is among the underlying mechanism.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Han-Xi Zhou
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hong-Yuan Yu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Yu-Hui Xia
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hang-Shuai Qu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Jia-Qian Bao
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Jin F, Zhu Y, Chen J, Wang R, Wang Y, Wu Y, Zhou P, Song X, Ren Z, Dong J. BRE Promotes Esophageal Squamous Cell Carcinoma Growth by Activating AKT Signaling. Front Oncol 2020; 10:1407. [PMID: 32850455 PMCID: PMC7431625 DOI: 10.3389/fonc.2020.01407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
Brain and reproductive organ-expressed protein (BRE) is aberrantly expressed in multiple cancers; however, its expression pattern in human esophageal squamous cell carcinoma (ESCC) and its role in ESCC progression remain unclear. In this study, we aimed to investigate the expression pattern of BRE in human ESCC and its role in ESCC progression. BRE was overexpressed in ESCC tissues compared with that in the adjacent non-tumor tissues. Forced expression of BRE was sufficient to enhance ESCC cell growth by promoting cell cycle progression and anti-apoptosis. Silencing of BRE suppressed these malignant phenotypes of ESCC cells. Mechanistic evaluation revealed that BRE overexpression activated the phosphorylation of AKT, and inhibition of the AKT pathway by MK2206 decreased the BRE-induced cell growth and apoptotic resistance in ESCC cells, highlighting the critical role of AKT signaling in mediating the effects of BRE. Moreover, the effects of BRE on ESCC cell growth and AKT activation were verified in a xenograft model in vivo. The present results show that BRE is overexpressed in ESCC tissues and contributes to the growth of ESCC cells by activating AKT signaling both in vitro and in vivo and provide insight into the role of BRE in AKT signaling and ESCC pathogenesis.
Collapse
Affiliation(s)
- Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Accordino G, Lettieri S, Bortolotto C, Benvenuti S, Gallotti A, Gattoni E, Agustoni F, Pozzi E, Rinaldi P, Primiceri C, Morbini P, Lancia A, Stella GM. From Interconnection between Genes and Microenvironment to Novel Immunotherapeutic Approaches in Upper Gastro-Intestinal Cancers-A Multidisciplinary Perspective. Cancers (Basel) 2020; 12:cancers12082105. [PMID: 32751137 PMCID: PMC7465773 DOI: 10.3390/cancers12082105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the progress during the last decade, patients with advanced gastric and esophageal cancers still have poor prognosis. Finding optimal therapeutic strategies represents an unmet need in this field. Several prognostic and predictive factors have been evaluated and may guide clinicians in choosing a tailored treatment. Data from large studies investigating the role of immunotherapy in gastrointestinal cancers are promising but further investigations are necessary to better select those patients who can mostly benefit from these novel therapies. This review will focus on the treatment of metastatic esophageal and gastric cancer. We will review the standard of care and the role of novel therapies such as immunotherapies and CAR-T. Moreover, we will focus on the analysis of potential predictive biomarkers such as Modify as: Microsatellite Instability (MSI) and PD-L1, which may lead to treatment personalization and improved treatment outcomes. A multidisciplinary point of view is mandatory to generate an integrated approach to properly exploit these novel antiproliferative agents.
Collapse
Affiliation(s)
- Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Silvia Benvenuti
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS-Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy;
| | - Anna Gallotti
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Elisabetta Gattoni
- Department of Oncology, Azienda Sanitaria Locale (ASL) AL, 27000 Casale Monferrato (AL), Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Emma Pozzi
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Pietro Rinaldi
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Cristiano Primiceri
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, Unit of Pathology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Andrea Lancia
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
- Correspondence: ; Tel.: +39-0382503369; Fax: +39-0382502719
| |
Collapse
|
8
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|