1
|
Nishimura FG, Sampaio BB, Komoto TT, da Silva WJ, da Costa MMG, Haddad GI, Peronni KC, Evangelista AF, Hossain M, Dimmock JR, Bandy B, Beleboni RO, Marins M, Fachin AL. Exploring CDKN1A Upregulation Mechanisms: Insights into Cell Cycle Arrest Induced by NC2603 Curcumin Analog in MCF-7 Breast Cancer Cells. Int J Mol Sci 2024; 25:4989. [PMID: 38732206 PMCID: PMC11084481 DOI: 10.3390/ijms25094989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 μM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.
Collapse
Affiliation(s)
- Felipe Garcia Nishimura
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Beatriz Borsani Sampaio
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Tatiana Takahasi Komoto
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Wanessa Julia da Silva
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Mariana Mezencio Gregório da Costa
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Gabriela Inforçatti Haddad
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | | | - Adriane Feijó Evangelista
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Mohammad Hossain
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46904, USA;
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan (USask), Saskatoon, SK S7N 5A2, Canada; (J.R.D.); (B.B.)
| | - Brian Bandy
- College of Pharmacy and Nutrition, University of Saskatchewan (USask), Saskatoon, SK S7N 5A2, Canada; (J.R.D.); (B.B.)
| | - Rene Oliveira Beleboni
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Ana Lucia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| |
Collapse
|
2
|
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37:5435-5463. [PMID: 37649266 DOI: 10.1002/ptr.7983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the world's second leading cause of mortality and one of the major public health problems. Cancer incidence and mortality rates remain high despite the great advancements in existing therapeutic, diagnostic, and preventive approaches. Therefore, a quest for less toxic and more efficient anti-cancer strategies is still at the forefront of the current research. Traditionally important, curcumin commonly known as a wonder molecule has received considerable attention as an anti-cancer, anti-inflammatory, and antioxidant candidate. However, limited water solubility and low bioavailability restrict its extensive utility in different pathological states. The investigators are making consistent efforts to develop newer strategies to overcome its limitations by designing different analogues with better pharmacokinetic and pharmacodynamic properties. The present review highlights the recent updates on curcumin and its analogues with special emphasis on various mechanistic pathways involved in anti-cancer activity. In addition, the structure-activity relationship of curcumin analogues has also been precisely discussed. This article will also provide key information for the design and development of newer curcumin analogues with desired pharmacokinetic and pharmacodynamic profiles and will provide in depth understanding of molecular pathways involved in the anti-cancer activities.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepak Kumar Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
3
|
Lu KH, Lu PWA, Lin CW, Yang SF. Curcumin in human osteosarcoma: From analogs to carriers. Drug Discov Today 2023; 28:103437. [PMID: 36372327 DOI: 10.1016/j.drudis.2022.103437] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Osteosarcoma (osteogenic sarcoma), the most prevalent primary malignant bone tumor in adolescents, confers low survival rates in patients with metastatic disease. Dietary curcumin has a number of anticancer properties but has poor bioavailability. To improve the clinical applications of curcumin, several potential curcumin analogs and nanobased curcumin delivery systems have been developed. In this critical review, we address the biological and pharmacological characteristics of curcumin and its analogs, with an emphasis on strategies to improve the bioactivity and bioavailability of curcumin analogs that may increase their application in the treatment of potent human metastatic osteosarcoma. We highlight promising current multifunctional nanoformulations and three-dimensional printed scaffold systems utilized for the targeting and delivery of curcumin in human osteosarcoma cells. Our purpose is to drive further research on curcumin analogs and carriers to improve their bioavailability and anti-osteosarcoma bioactivity.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Farnood PR, Pazhooh RD, Asemi Z, Yousefi B. Targeting Signaling Pathway by Curcumin in Osteosarcoma. Curr Mol Pharmacol 2023; 16:71-82. [PMID: 35400349 DOI: 10.2174/1874467215666220408104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The most prevalent primary bone malignancy among children and adolescents is osteosarcoma. The high mortality rate of osteosarcoma is due to lung metastasis. Despite the development of multi-agent chemotherapy and surgical resection, patients with osteosarcoma have a high metastasis rate and poor prognosis. Thus, it is necessary to identify novel therapeutic agents to improve the 5-year survival rate of these patients. Curcumin, a phytochemical compound derived from Curcuma longa, has been employed in treating several types of cancers through various mechanisms. Also, in vitro studies have demonstrated that curcumin could inhibit cell proliferation and induce apoptosis in osteosarcoma cells. Development in identifying signaling pathways involved in the pathogenesis of osteosarcoma has provided insight into finding new therapeutic targets for the treatment of this cancer. Targeting MAPK/ERK, PI3k/AKT, Wnt/β-catenin, Notch, and MircoRNA by curcumin has been evaluated to improve outcomes in patients with osteosarcoma. Although curcumin is a potent anti-cancer compound, it has rarely been studied in clinical settings due to its congenital properties such as hydrophobicity and poor bioavailability. In this review, we recapitulate and describe the effect of curcumin in regulating signaling pathways involved in osteosarcoma.
Collapse
Affiliation(s)
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Lu KH, Lu PWA, Lu EWH, Lin CW, Yang SF. Curcumin and its Analogs and Carriers: Potential Therapeutic Strategies for Human Osteosarcoma. Int J Biol Sci 2023; 19:1241-1265. [PMID: 36923933 PMCID: PMC10008701 DOI: 10.7150/ijbs.80590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 03/13/2023] Open
Abstract
Curcumin is a natural polyphenol phytochemical derived from turmeric with antioxidant, anti-inflammatory, and anticancer properties but is concerned about poor solubility in water, absorption, and metabolic stability. Potent metastatic osteosarcoma is the most common primary bone cancer in children, adolescents, and young adults. It is responsible for low survival rates because of its high rate of metastasis to the lungs. To improve poor bioavailability, numerous curcumin analogs were developed to possess anticancer characteristics through a variety of biological pathways involved in cytotoxicity, proliferation, autophagy, sensitizing chemotherapy, and metastases. This review provides an overview of their various pharmacological functions, molecular mechanisms, and therapeutic potential as a remedy for human osteosarcoma. To enhance therapeutic efficacy, several liposomal nanoparticles, nanocarriers, multifunctional micelles, and three-dimensional printed scaffolds have also been developed for the controlled delivery of curcumin targeting human osteosarcoma cells. Consequently, curcumin and several potential analogs and delivery formulations are optimistic candidates to improve the currently available strategy for human osteosarcoma. However, further insight into the mechanism of action of promising curcumin analogs and the development of carriers in clinical trials of osteosarcoma needs to be investigated to improve their overall potency and clinical utility, in particular the anti-metastatic effect.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Eric Wun-Hao Lu
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156:113956. [DOI: 10.1016/j.biopha.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
7
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. JOURNAL OF ONCOLOGY 2021; 2021:3006853. [PMID: 34671398 PMCID: PMC8523229 DOI: 10.1155/2021/3006853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is a major form of malignant bone tumor that typically occurs in young adults and children. The combination of aggressive surgical strategies and chemotherapy has led to improvements in survival time, although individuals with recurrent or metastatic conditions still have an extremely poor prognosis. This disappointing situation strongly indicates that testing novel, targeted therapeutic agents is imperative to prevent the progression of osteosarcoma and enhance patient survival time. Curcumin, a naturally occurring phenolic compound found in Curcuma longa, has been shown to have a wide variety of anti-tumor, anti-oxidant, and anti-inflammatory activities in many types of cancers including osteosarcoma. Curcumin is a highly pleiotropic molecule that can modulate intracellular signaling pathways to regulate cell proliferation, inflammation, and apoptosis. These signaling pathways include RANK/RANKL, Notch, Wnt/β-catenin, apoptosis, autophagy, JAK/STAT, and HIF-1 pathways. Additionally, curcumin can regulate the expression of various types of microRNAs that are involved in osteosarcoma. Therefore, curcumin may be a potential candidate for the prevention and treatment of osteosarcoma. This comprehensive review not only covers the use of curcumin in the treatment of osteosarcoma and its anti-cancer molecular mechanisms but also reveals the novel delivery strategies and combination therapies with the aim to improve the therapeutic effect of curcumin.
Collapse
|
9
|
Anselmo DB, Polaquini CR, Marques BC, Ayusso GM, Assis LR, Torrezan GS, Rahal P, Fachin AL, Calmon MF, Marins MA, Regasini LO. Curcumin-cinnamaldehyde hybrids as antiproliferative agents against women’s cancer cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
GO-Y078, a Curcumin Analog, Induces Both Apoptotic Pathways in Human Osteosarcoma Cells via Activation of JNK and p38 Signaling. Pharmaceuticals (Basel) 2021; 14:ph14060497. [PMID: 34073773 PMCID: PMC8225057 DOI: 10.3390/ph14060497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy in teenagers and continues to confer a generally poor prognosis due to its highly metastatic potential. Poor solubility in water and instability of curcumin limits its bioavailability for use in the adjuvant situation to improve the prognosis and the long-term survival of patients with osteosarcoma. To further obtain information regarding the apoptosis induced by a new curcumin analog, GO-Y078, in human osteosarcoma cells, flow cytometric analysis, annexin V-FITC/PI apoptosis staining assay, human apoptosis array, and Western blotting were employed. GO-Y078 dose-dependently decreased viabilities of human osteosarcoma U2OS, MG-63, 143B, and Saos-2 cells and induced sub-G1 fraction arrest and apoptosis in U2OS and 143B cells. In addition to the effector caspase 3 and poly adenosine diphosphate-ribose polymerase, GO-Y078 significantly activated both initiators of extrinsic caspase 8 and intrinsic caspase 9, whereas cellular inhibitors of apoptosis 1 (cIAP-1) and X-chromosome-linked IAP (XIAP) in U2OS and 143B cells were significantly repressed. Moreover, GO-Y078 increased phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2, and p38 in U2OS and 143B cells. Using inhibitors of JNK (JNK-in-8) and p38 (SB203580), GO-Y078′s increases in cleaved caspases 8, 9, and 3 could be expectedly suppressed, but they could not be affected by co-treatment with the ERK inhibitor (U0126). Altogether, GO-Y078 simultaneously induces both apoptotic pathways and cell arrest in U2OS and 143B cells through activating JNK and p38 signaling and repressing IAPs. These findings contribute to a better understanding of the mechanisms responsible for GO-Y078′s apoptotic effects on human osteosarcoma cells.
Collapse
|
12
|
Liu T, Long T, Li H. Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor-κB-dependent pathway. Exp Ther Med 2021; 21:202. [PMID: 33500696 DOI: 10.3892/etm.2021.9635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common cancer of the oral cavity. Curcumin (Cur), a naturally derived compound, is reported to have broad-spectrum anticancer activity and is considered as an effective nuclear factor-κB (NF-κB) inhibitor. The present study aimed to clarify the detailed molecular mechanism though which Cur regulates NF-κB pathway activity in OSCC. The viability of HSC3 and CAL33 cells following treatment with Cur was determined using a Cell Counting Kit-8 assay. The protein and mRNA expression of specificity protein 1 (Sp1), p65 and heat shock factor 1 (HSF1) was determined by western blotting and reverse transcription-quantitative PCR analysis, respectively. The NF-κB activity was measured by Dual-Luciferase reporter assay. Short hairpin RNA targeting Sp1 or control RNA was transfected into HSC3 cells using X-treme GENE HP DNA Transfection System. Colony formation assays were performed using crystal violet staining. The results demonstrated that Cur significantly inhibited the viability and colony formation ability of HSC3 and CAL33 cells. In addition, Cur decreased the expression of Sp1, p65 and HSF1 by suppressing their transcription levels. Cur decreased NF-κB activity in OSCC cells, and Sp1 downregulation enhanced the effect of Cur. The findings from the present study suggested that Cur may inhibit the proliferation of OSCC cells via a Sp1/NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Tian Liu
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Tian Long
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Haosen Li
- Department of Stomatology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
13
|
Luo Q, Luo H, Fu H, Huang H, Huang H, Luo K, Li C, Hu R, Zheng C, Lan C, Tang Q. [Curcumin suppresses invasiveness and migration of human glioma cells in vitro by inhibiting HDGF/β-catenin complex]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:911-916. [PMID: 31511210 DOI: 10.12122/j.issn.1673-4254.2019.08.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effect of curcumin on the invasion and migration of human glioma cells in vitro and explore the molecular mechanisms. METHODS MTT assay was used for screening the optimal curcumin concentrations. The effects of curcumin on the invasion and metastasis of human glioma cell lines U251 and LN229 were tested using Transwell assay, Boyden assay and wound-healing assays. The expression of the related proteins and their interactions were determined using Western blotting and coimmunoprecipitation assay. RESULTS Curcumin at the concentration of 20 μmol/L for 48 h was used as the optimal condition for subsequent cell treatment. In the two glioma cell lines, curcumin significantly suppressed the invasion and migration of the cells (P < 0.05) and lowered the expressions of hepatoma-derived growth factor (HDGF), Ncadherin, vimentin, Snail and Slug, but increased the expression of E-cadherin. Interference of HDGF in curcumin-treated glioma cells synergistically inhibited the epithelial-mesenchymal transition (EMT) signals, while overexpression of HDGF significantly reversed the inhibitory effect of curcumin on EMT; curcumin treatment could significantly reduce the binding of HDGF to β-catenin. CONCLUSIONS Curcumin suppresses EMT signal by reducing HDGF/β-catenin complex and thereby lowers the migration and invasion abilities of human glioma cells in vitro.
Collapse
Affiliation(s)
- Qisheng Luo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China.,Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hongcheng Luo
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Huadong Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Kunxiang Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Rentong Hu
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chuanhua Zheng
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chuanliu Lan
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Qianli Tang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China.,Department of Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
14
|
Sanches CVG, Sardi JDCO, Terada RSS, Lazarini JG, Freires IA, Polaquini CR, Torrezan GS, Regasini LO, Fujimaki M, Rosalen PL. Diacetylcurcumin: a new photosensitizer for antimicrobial photodynamic therapy in Streptococcus mutans biofilms. BIOFOULING 2019; 35:340-349. [PMID: 31066298 DOI: 10.1080/08927014.2019.1606907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the effect of antimicrobial photodynamic therapy (aPDT) on S. mutans using diacetylcurcumin (DAC) and verified DAC toxicity. In vitro, S. mutans biofilms were exposed to curcumin (CUR) and DAC and were light-irradiated. Biofilms were collected, plated and incubated for colony counts. DAC and CUR toxicity assays were conducted with Human Gingival Fibroblast cells (HGF). In vivo, G. mellonella larvae were injected with S. mutans and treated with DAC, CUR and aPDT. The hemolymph was plated and incubated for colony counts. Significant reductions were observed when DAC and CUR alone were used and when aPDT was applied. HGF assays demonstrated no differences in cell viability for most groups. DAC and CUR reduced the S. mutans load in G. mellonella larvae both alone and with aPDT. Systematic toxicity assays on G. mellonella demonstrated no effect of DAC and CUR or aPDT on the survival curve.
Collapse
Affiliation(s)
| | | | | | - Josy Goldoni Lazarini
- b Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| | - Irlan Almeida Freires
- c Department Oral Biology , Coll Dent, University of Florida , Center Dr, 1395 , FL Gainesville , USA
| | - Carlos Roberto Polaquini
- d Department of Chemistry and Environmental Sciences , São Paulo State University Júlio de Mesquita Filho , São José do Rio Preto , Brazil
| | - Guilherme Silva Torrezan
- d Department of Chemistry and Environmental Sciences , São Paulo State University Júlio de Mesquita Filho , São José do Rio Preto , Brazil
| | - Luis Octavio Regasini
- d Department of Chemistry and Environmental Sciences , São Paulo State University Júlio de Mesquita Filho , São José do Rio Preto , Brazil
| | - Mitsue Fujimaki
- a Department of Dentistry , State University of Maringá , Maringá , Brazil
| | - Pedro Luiz Rosalen
- b Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| |
Collapse
|