1
|
Nguyen NT, Lam HM, Bui TQ, Tran HLB. Freezing and bioreactor in the low-concentration detergents: A novel approach in the decellularization of small-diameter arteries. Int J Artif Organs 2024:3913988241288369. [PMID: 39394734 DOI: 10.1177/03913988241288369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Using decellularized small-diameter vascular bypass substitutes (<6 mm) is an efficient method for bypass grafting. A solution containing 0.5% SDS (weight/volume) is commonly used for extended periods to generate acellular tissues. However, this solution causes damage to the microfibril structure and alters the mechanical forces. Hence, the objective of this study is to reduce the concentration of SDS to preserve the structure and achieve efficient decellularization. The study employs a diluted solution of 0.3% SDS (weight/volume) to treat fresh and frozen swine small-diameter arteries, utilizing physical methods such as freezing and thawing. The effectiveness of cell removal was evaluated using histological analysis and the remaining DNA content of the sample. Furthermore, the acellular circuit also assesses the cytotoxicity and proliferation of HUVECs to gauge their safety. Through the use of 0.3% SDS, a bioreactor system, and freezing-thawing, the pig arteries are successfully decellularized, resulting in residual DNA levels of less than 50 ng/mg dry weight. This process does not cause any major changes to the biomechanical or structural properties of the arteries. The acellular samples exhibit no toxicity on the L929 cell line and promote the growth of HUVECs at their highest rate on the fourth day. This allows for the placement of acellular vascular grafts to evaluate physiological processes within the animal body. This is an important requirement in clinical blood vessel transplantation.
Collapse
Affiliation(s)
- Nho Thuan Nguyen
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Minh Lam
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Ha Le Bao Tran
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Will PA, Taqatqeh F, Fricke F, Berner JE, Lindenblatt N, Kneser U, Hirche C. Tissue-engineered cellulose tubes for microvascular and lymphatic reconstruction: A translational and feasibility study. J Plast Reconstr Aesthet Surg 2024; 97:200-211. [PMID: 39168030 DOI: 10.1016/j.bjps.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Lymphedema microsurgery is an emerging treatment modality, with dissimilar long-term outcomes. One of the main technical challenges in lymphatic microsurgery is the identification and availability of suitable donor vessels for anastomosis. Tissue engineering using biomaterials has demonstrated promise in addressing vessel quality issues in other fields, but its application in microsurgery is still limited. METHODS Decellularized cellulose tubes were developed and bioengineered by decellularizing stems of Taraxacum-Ruderalia. The microscopic structure, mechanical properties, and residual DNA content of the cellulose tubes were evaluated. Human and murine skin fibroblasts and dermal lymphatic endothelial cells were isolated and cultured for recellularization studies. Biocompatibility, proliferative capacity, and ex-vivo endothelialization of the cellulose tubes were assessed as potential interposition grafts. Finally, the engineered cellulose tubes were assessed as interposing xenografts for lymphovenous anastomoses (LVA) in an ex-vivo swine limb model. RESULTS The decellularized cellulose tubes exhibited a suitable microscopic structure, mechanical properties, and low residual DNA content. The tubes showed adequate biocompatibility, supported cell proliferation, and facilitated spontaneous ex-vivo endothelialization of lymphatic endothelial cells. In the swine limb model, LVA using the engineered cellulose tubes was successfully performed. CONCLUSION This translational study presents the use of decellularized cellulose tubes as an adjunct for micro and supermicrosurgical reconstruction. The developed tubes demonstrated favorable structural, mechanical, and biocompatible properties, making them a potential candidate for improving long-term outcomes in lymphedema surgical treatment. The next translational step would be trialing the obtained tubes in a microsurgical in-vivo model.
Collapse
Affiliation(s)
- P A Will
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany.
| | - F Taqatqeh
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - F Fricke
- Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - J E Berner
- Kellogg College, University of Oxford, Oxford, United Kingdom; Department of Plastic Surgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - N Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Lymphatic Network of Excellence, University Hospital Zurich, Zurich, Switzerland
| | - U Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany
| | - C Hirche
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany; Department of Plastic, Hand, and Reconstructive Microsurgery, Hand-Trauma and Replantation Center, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Xia Y, Rao Z, Wu S, Huang J, Zhou H, Li H, Zheng H, Guo D, Quan D, Ou JS, Bai Y, Liu Y. Polyzwitterion-grafted decellularized bovine intercostal arteries as new substitutes of small-diameter arteries for vascular regeneration. Regen Biomater 2024; 11:rbae098. [PMID: 39224131 PMCID: PMC11368410 DOI: 10.1093/rb/rbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Coronary artery bypass grafting is acknowledged as a major clinical approach for treatment of severe coronary artery atherosclerotic heart disease. This procedure typically requires autologous small-diameter vascular grafts. However, the limited availability of the donor vessels and associated trauma during tissue harvest underscore the necessity for artificial arterial alternatives. Herein, decellularized bovine intercostal arteries were successfully fabricated with lengths ranging from 15 to 30 cm, which also closely match the inner diameters of human coronary arteries. These decellularized arterial grafts exhibited great promise following poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting from the inner surface. Such surface modification endowed the decellularized arteries with superior mechanical strength, enhanced anticoagulant properties and improved biocompatibility, compared to the decellularized bovine intercostal arteries alone, or even those decellularized grafts modified with both heparin and vascular endothelial growth factor. After replacement of the carotid arteries in rabbits, all surface-modified vascular grafts have shown good patency within 30 days post-implantation. Notably, strong signal was observed after α-SMA immunofluorescence staining on the PMPC-grafted vessels, indicating significant potential for regenerating the vascular smooth muscle layer and thereby restoring full structures of the artery. Consequently, the decellularized bovine intercostal arteries surface modified by PMPC can emerge as a potent candidate for small-diameter artificial blood vessels, and have shown great promise to serve as viable substitutes of arterial autografts.
Collapse
Affiliation(s)
- Yuan Xia
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Simin Wu
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiayao Huang
- Department of Medical Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyun Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| | - Hanzhao Li
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| | - Hui Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| | - Daxin Guo
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Engineering Technology Centre for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunqi Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| |
Collapse
|
4
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Su Z, Xing Y, Xiao Y, Guo J, Wang C, Wang F, Xu Z, Wu W, Gu Y. Decellularized, Heparinized Small-Caliber Tissue-Engineered "Biological Tubes" for Allograft Vascular Grafts. ACS Biomater Sci Eng 2024; 10:5154-5167. [PMID: 39079153 DOI: 10.1021/acsbiomaterials.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
There remains a lack of small-caliber tissue-engineered blood vessels (TEBVs) with wide clinical use. Biotubes were developed by electrospinning and in-body tissue architecture (iBTA) technology to prepare small-caliber TEBVs with promising applications. Different ratios of hybrid fibers of poly(l-lactic-co-ε-caprolactone) (PLCL) and polyurethane (PU) were obtained by electrospinning, and the electrospun tubes were then implanted subcutaneously in the abdominal area of a rabbit (as an in vivo bioreactor). The biotubes were harvested after 4 weeks. They were then decellularized and cross-linked with heparin. PLCL/PU electrospun vascular tubes, decellularized biotubes (D-biotubes), and heparinized combined decellularized biotubes (H + D-biotubes) underwent carotid artery allograft transplantation in a rabbit model. Vascular ultrasound follow-up and histological observation revealed that the biotubes developed based on electrospinning and iBTA technology, after decellularization and heparinization cross-linking, showed a better patency rate, adequate mechanical properties, and remodeling ability in the rabbit model. IBTA technology caused a higher patency, and the heparinization cross-linking process gave the biotubes stronger mechanical properties.
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100086 Beijing, China
| | - Julong Guo
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Cong Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Fei Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Zeqin Xu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Weiwei Wu
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| |
Collapse
|
6
|
Han Y, Zhang L, Kong L, Wang G, Ye Z. Investigating the relationship between residual stress and micromechanical properties of blood vessels using atomic force microscopy. Microsc Res Tech 2024; 87:1678-1692. [PMID: 38500314 DOI: 10.1002/jemt.24552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The magnitude of vascular residual stress, an inherent characteristic exclusive to the vasculature, exhibits a strong correlation with vascular compliance, tensile resistance, vascular rigidity, and vascular remodeling subsequent to vascular transplantation. Vascular residual stress can be quantified by evaluating the magnitude of the opening angle within the vascular ring. For decellularized vessels, the vascular ring's opening angle diminishes, consequently reducing residual stress. The decellularization process induces a laxity in the vascular fiber structure within decellularized vessels. To investigate the interrelation between the magnitude of residual stress and the microstructure as well as mechanical properties of elastin and collagen within blood vessels, this study employed fresh blood vessels, stress-relieved vessels, and sections of decellularized blood vessels. Structural scanning and force map experiments on the surface of the sections were conducted using atomic force microscopy (AFM). The findings revealed well-organized arrangements of elastin and collagen within fresh vessels, wherein the regularity of collagen and elastin exhibited variability as residual stress declined. Furthermore, both stress-relieved and decellularized vessel sections exhibited a reduction in the mean Young's modulus to varying extents in comparison to fresh vessels. The validity of our experimental results was further corroborated through finite element simulations. Hence, residual stress assumes a crucial role in upholding the structural stability of blood vessels, and the intricate association between residual stress and the microstructural and micromechanical properties of blood vessels holds significant implications for comprehending the impact of vascular diseases on vascular structure and advancing the development of biomimetic artificial blood vessels that replicate residual stress. RESEARCH HIGHLIGHTS: In this inquiry, we scrutinized the interconnection amid vascular residual stress and the microscale and nanoscale aspects of vascular structure and mechanical function, employing AFM. We ascertained that residual stress assumes a pivotal role in upholding vascular microstructure and mechanical attributes. The experimental outcomes were subsequently validated through finite element simulation.
Collapse
Affiliation(s)
- Yibo Han
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Liyuan Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- JinFeng Laboratory, Chongqing, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- JinFeng Laboratory, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
8
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
9
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
10
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
11
|
Xiao Y, Jin X, Jia L, Li J, Zhang B, Geng X, Ye L, Zhang AY, Gu Y, Feng ZG. Long-term observation of polycaprolactone small-diameter vascular grafts with thickened outer layer and heparinized inner layer in rabbit carotid arteries. Biomed Mater 2024; 19:035018. [PMID: 38430567 DOI: 10.1088/1748-605x/ad2f6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
In our previous study, the pristine bilayer small-diameterin situtissue engineered vascular grafts (pTEVGs) were electrospun from a heparinized polycaprolactone (PCL45k) as an inner layer and a non-heparinized PCL80k as an outer layer in the thickness of about 131 μm and 202 μm, respectively. However, the hydrophilic enhancement of inner layer stemmed from the heparinization accelerated the degradation of grafts leading to the early formation of arterial aneurysms in a period of 3 months, severely hindering the perennial observation of the neo-tissue regeneration, host cell infiltration and graft remodeling in those implanted pTEVGs. Herein to address this drawback, the thickness of the outer layers was increased with PCL80k to around 268 μm, while the inner layer remained unchangeable. The thickened TEVGs named as tTEVGs were evaluated in six rabbits via a carotid artery interpositional model for a period of 9 months. All the animals kept alive and the grafts remained patent until explantation except for one whose one side of arterial blood vessels was occluded after an aneurysm occurred at 6 months. Although a significant degradation was observed in the implanted grafts at 9 month, the occurrence of aneurysms was obviously delayed compared to pTEVGs. The tissue stainings indicated that the endothelial cell remodeling was substantially completed by 3 months, while the regeneration of elastin and collagen remained smaller and unevenly distributed in comparison to autologous vessels. Additionally, the proliferation of macrophages and smooth muscle cells reached the maximum by 3 months. These tTEVGs possessing a heparinized inner layer and a thickened outer layer exhibited good patency and significantly delayed onset time of aneurysms.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jubo Li
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Baojie Zhang
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
12
|
Rashidi F, Mohammadzadeh M, Abdolmaleki A, Asadi A, Sheikhlou M. Acellular carotid scaffold and evaluation the biological and biomechanical properties for tissue engineering. J Cardiovasc Thorac Res 2024; 16:28-37. [PMID: 38584661 PMCID: PMC10997974 DOI: 10.34172/jcvtr.32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/10/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The issues associated with the limitation of appropriate autologous vessels for vascular reconstruction via bypass surgery highlight the need for new alternative strategies based on tissue engineering. The present study aimed to prepare decellularized scaffolds from ovine carotid using chemical decellularization method. Methods Ovine carotid were decellularized with Triton X-100 and tri-n-butyl phosphate (TnBP) at 37 °C. Histological analysis, biochemical tests, biomechanical assay and biocompatibility assay were used to investigate the efficacy of decellularization. Results Decellularization method could successfully decellularize ovine carotid without leaving any cell remnants. Scaffolds showed minimal destruction of the three-dimensional structure and extracellular matrix, as well as adequate mechanical resistance and biocompatibility for cell growth and proliferation. Conclusion Prepared acellular scaffold exhibited the necessary characteristics for clinical applications.
Collapse
Affiliation(s)
- Farina Rashidi
- Department of Biology, Faculty of Science, University of Urmia, Urmia, Iran
| | | | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehrdad Sheikhlou
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
13
|
Jiang S, Wise SG, Kovacic JC, Rnjak-Kovacina J, Lord MS. Biomaterials containing extracellular matrix molecules as biomimetic next-generation vascular grafts. Trends Biotechnol 2024; 42:369-381. [PMID: 37852854 DOI: 10.1016/j.tibtech.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The performance of synthetic biomaterial vascular grafts for the bypass of stenotic and dysfunctional blood vessels remains an intractable challenge in small-diameter applications. The functionalization of biomaterials with extracellular matrix (ECM) molecules is a promising approach because these molecules can regulate multiple biological processes in vascular tissues. In this review, we critically examine emerging approaches to ECM-containing vascular graft biomaterials and explore opportunities for future research and development toward clinical use.
Collapse
Affiliation(s)
- Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Cevik M, Dikici S. Development of tissue-engineered vascular grafts from decellularized parsley stems. SOFT MATTER 2024; 20:338-350. [PMID: 38088147 DOI: 10.1039/d3sm01236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cardiovascular diseases are mostly associated with narrowing or blockage of blood vessels, and it is the most common cause of death worldwide. The use of vascular grafts is a promising approach to bypass or replace the blocked vessels for long-term treatment. Although autologous arteries or veins are the most preferred tissue sources for vascular bypass, the limited presence and poor quality of autologous vessels necessitate seeking alternative biomaterials. Recently, synthetic grafts have gained attention as an alternative to autologous grafts. However, the high failure rate of synthetic grafts has been reported primarily due to thrombosis, atherosclerosis, intimal hyperplasia, or infection. Thrombosis, the main reason for failure upon implantation, is associated with damage or absence of endothelial cell lining in the vascular graft's luminal surface. To overcome this, tissue-engineered vascular grafts (TEVGs) have come into prominence. Alongside the well-established scaffold manufacturing techniques, decellularized plant-based constructs have recently gained significant importance and are an emerging field in tissue engineering and regenerative medicine. Accordingly, in this study, we demonstrated the fabrication of tubular scaffolds from decellularized parsley stems and recellularized them with human endothelial cells to be used as a potential TEVG. Our results suggested that the native plant DNA was successfully removed, and soft tubular biomaterials were successfully manufactured via the chemical decellularization of the parsley stems. The decellularized parsley stems showed suitable mechanical and biological properties to be used as a TEVG material, and they provided a suitable environment for the culture of human endothelial cells to attach and create a pseudo endothelium prior to implantation. This study is the first one to demonstrate the potential of the parsley stems to be used as a potential TEVG biomaterial.
Collapse
Affiliation(s)
- Merve Cevik
- Department of Biotechnology, Graduate School of Education, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
15
|
Wang N, Wang H, Weng D, Wang Y, Yu L, Wang F, Zhang T, Liu J, He Z. Nanomaterials for small diameter vascular grafts: overview and outlook. NANOSCALE ADVANCES 2023; 5:6751-6767. [PMID: 38059025 PMCID: PMC10696638 DOI: 10.1039/d3na00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
Small-diameter vascular grafts (SDVGs) cannot meet current clinical demands owing to their suboptimal long-term patency rate. Various materials have been employed to address this issue, including nanomaterials (NMs), which have demonstrated exceptional capabilities and promising application potentials. In this review, the utilization of NMs in different forms, including nanoparticles, nanofibers, and nanofilms, in the SDVG field is discussed, and future perspectives for the development of NM-loading SDVGs are highlighted. It is expected that this review will provide helpful information to scholars in the innovative interdiscipline of cardiovascular disease treatment and NM.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
16
|
Wang M, Mequanint K. Preparation and Microscopic Mechanical Characterization of L-Methionine-Based Polyphosphazene Fibrous Mats for Vascular Tissue Engineering. Pharmaceutics 2023; 15:2546. [PMID: 38004526 PMCID: PMC10674633 DOI: 10.3390/pharmaceutics15112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigates the mechanical properties, degradation behavior, and biocompatibility of poly[(α-amino acid ester) phosphazene] electrospun fibers based on the ethyl ester of L-methionine (PαAPz-M), a material with potential applications in tissue engineering. We utilized atomic force microscopy (AFM) to evaluate the fiber mechanical characteristics and calculate its Young's modulus, revealing it to closely mimic the stiffness of a natural extracellular matrix (ECM). We also studied the degradation behavior of PαAPz-M scaffolds over 21 days, showing that they maintain the highly porous structure required for tissue engineering. Further evaluation of mesenchymal multipotent 10T1/2 cell and mesenchymal stem cell (MSC) behavior on the scaffolds demonstrated significant cell viability, proliferation, and successful MSC differentiation into smooth muscle cells. Expression of collagen and elastin by MSCs on the fiber mats highlighted potential ECM formation during scaffold degradation, confirming PαAPz-M as a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Kibret Mequanint
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
| |
Collapse
|
17
|
Liu D, Meng Q, Hu J. Bacterial Nanocellulose Hydrogel: A Promising Alternative Material for the Fabrication of Engineered Vascular Grafts. Polymers (Basel) 2023; 15:3812. [PMID: 37765666 PMCID: PMC10534661 DOI: 10.3390/polym15183812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Blood vessels are crucial in the human body, providing essential nutrients to all tissues while facilitating waste removal. As the incidence of cardiovascular disease rises, the demand for efficient treatments increases concurrently. Currently, the predominant interventions for cardiovascular disease are autografts and allografts. Although effective, they present limitations including high costs and inconsistent success rates. Recently, synthetic vascular grafts, made from artificial materials, have emerged as promising alternatives to traditional methods. Among these materials, bacterial cellulose hydrogel exhibits significant potential for tissue engineering applications, particularly in developing nanoscale platforms that regulate cell behavior and promote tissue regeneration, attributed to its notable physicochemical and biocompatible properties. This study reviews recent progress in fabricating engineered vascular grafts using bacterial nanocellulose, demonstrating the efficacy of bacterial cellulose hydrogel as a biomaterial for synthetic vascular grafts, specifically for stimulating angiogenesis and neovascularization.
Collapse
Affiliation(s)
| | | | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada; (D.L.); (Q.M.)
| |
Collapse
|
18
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
19
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
20
|
Stougiannou TM, Christodoulou KC, Georgakarakos E, Mikroulis D, Karangelis D. Promising Novel Therapies in the Treatment of Aortic and Visceral Aneurysms. J Clin Med 2023; 12:5878. [PMID: 37762818 PMCID: PMC10531975 DOI: 10.3390/jcm12185878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aortic and visceral aneurysms affect large arterial vessels, including the thoracic and abdominal aorta, as well as visceral arterial branches, such as the splenic, hepatic, and mesenteric arteries, respectively. Although these clinical entities have not been equally researched, it seems that they might share certain common pathophysiological changes and molecular mechanisms. The yet limited published data, with regard to newly designed, novel therapies, could serve as a nidus for the evaluation and potential implementation of such treatments in large artery aneurysms. In both animal models and clinical trials, various novel treatments have been employed in an attempt to not only reduce the complications of the already implemented modalities, through manufacturing of more durable materials, but also to regenerate or replace affected tissues themselves. Cellular populations like stem and differentiated vascular cell types, large diameter tissue-engineered vascular grafts (TEVGs), and various molecules and biological factors that might target aspects of the pathophysiological process, including cell-adhesion stabilizers, metalloproteinase inhibitors, and miRNAs, could potentially contribute significantly to the treatment of these types of aneurysms. In this narrative review, we sought to collect and present relevant evidence in the literature, in an effort to unveil promising biological therapies, possibly applicable to the treatment of aortic aneurysms, both thoracic and abdominal, as well as visceral aneurysms.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (E.G.); (D.M.); (D.K.)
| | | | | | | | | |
Collapse
|
21
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
22
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
23
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| |
Collapse
|
24
|
A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel. J Mech Behav Biomed Mater 2023; 139:105665. [PMID: 36640542 DOI: 10.1016/j.jmbbm.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Reproducing both the mechanical and biological performance of native blood vessels remains an ongoing challenge in vascular tissue engineering. Additive-lathe printing offers an attractive method of fabricating long tubular constructs as a potential vascular graft for the treatment of cardiovascular diseases. Printing hydrogels onto rotating horizontal mandrels often leads to sagging, resulting in poor and variable mechanical properties. In this study, an additive-lathe printing system with a vertical mandrel to fabricate tubular constructs is presented. Various concentrations of gelatin methacryloyl (gelMA) hydrogel were used to print grafts on the rotating mandrel in a helical pattern. The printing parameters were selected to achieve the bonding of consecutive gelMA filaments to improve the quality of the printed graft. The hydrogel filaments were fused properly under the action of gravity on the vertical mandrel. Thus, the vertical additive-lathe printing system was used to print uniform wall thickness grafts, eliminating the hydrogel sagging problem. Tensile testing performed in both circumferential and longitudinal direction revealed that the anisotropic properties of printed gelMA constructs were similar to those observed in the native blood vessels. In addition, no leakage was detected through the walls of the gelMA grafts during burst pressure measurement. Therefore, the current printing setup could be utilized to print vascular grafts for the treatment of cardiovascular diseases.
Collapse
|
25
|
Gou K, Hu JJ, Baek S. Mechanical characterization of human umbilical arteries by thick-walled models: Enhanced vascular compliance by removing an abluminal lining. J Mech Behav Biomed Mater 2023; 142:105811. [PMID: 37028123 DOI: 10.1016/j.jmbbm.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The decellularized human umbilical artery (HUA) is considered as a promising option for small-diameter, tissue-engineered vascular grafts (TEVGs). Our previous study showed that the HUA bears a thin, watertight lining on its outermost abluminal surface. Removal of this abluminal lining layer improves efficacy of the perfusion-assisted decellularization of the HUA and increases its compliance. As stress across the wall is believed to affect growth and remodeling of the TEVG, it is imperative to mechanically characterize the HUA using thick-walled models. Combining inflation experiments and computational methods, we investigate the mechanical properties of the HUA before and after the abluminal lining removal to examine the HUA's wall mechanics. The inflation tests of five HUAs were performed to obtain the mechanical and geometrical response of the vessel wall before and after the lining layer removal. Using nonlinear hyperelastic models, the same responses are obtained computationally using the thick-walled models. The experimental data are incorporated into the computational models to estimate the mechanical and orientation parameters of the fibers and isotropic matrix of different layers in the HUAs. The parameter fitting of both thick-walled models (before and after the abluminal lining removal) results in most of the R-squared values for measuring the goodness of fitting to be over 0.90 for all samples. The compliance of the HUA increases from a mean value of 2.60% per 100 mmHg before the removal of the lining to a mean value of 4.21% per 100 mmHg after the removal. The results reveal that, although the abluminal lining is thin, it is stiff and capable of supporting majority of the high luminal pressure, and that the inner layer is far less stressed than the abluminal lining. Computational simulations also show that removal of the abluminal lining increases the circumferential wall stress by up to 280 kPa under the in vivo luminal pressure. The integrated computational and experimental approaches provide more accurate estimates of the material behaviors of HUAs employed in grafts and, in turn, the study enhances our understanding of interactions between the graft and the native vessel on vascular growth and remodeling.
Collapse
Affiliation(s)
- Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA.
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
26
|
Sung SY, Lin YW, Wu CC, Lin CY, Hsu PS, Periasamy S, Nagarajan B, Hsieh DJ, Tsai YT, Tsai CS, Lin FY. Supercritical carbon dioxide-decellularized arteries exhibit physiologic-like vessel regeneration following xenotransplantation in rats. Biomater Sci 2023; 11:2566-2580. [PMID: 36789647 DOI: 10.1039/d2bm01233b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Currently, many techniques are used for decellularization of grafts, including physical, enzymatic, and chemical treatments. Indeed, decellularized xenogenic grafts provide superior outcomes than alternative synthetic conduits. However, vascular grafts produced by these methods are not perfect; their defects include defective vessel wall structures, detergent residues, and the development of aneurysms after grafting. Therefore, it is essential to develop a more appropriate process to produce decellularized vascular grafts. Supercritical carbon dioxide (ScCO2) has been used in decellularization technologies in recent years. It is beneficial for the long-term preservation of tissues and regeneration of new vessels. We have previously reported that ScCO2-produced acellular porcine corneas show excellent biocompatibility following lamellar corneal transplantation in rabbits. In this study, we wanted to use this method to fabricate vascular grafts (ScCO2-decellularized rabbit femoral artery (DFA)) and analyze their efficacy, parameters regarding rejection by the recipient's (ACI/NKyo rats) immune system and biocompatibility, structural regeneration, and functionality in vivo. The results indicated that the ScCO2-DFA showed higher biocompatibility, enhanced chemotactic migration of endothelial progenitor cells, lower risk of vasculopathy, lower inflammatory and splenic immune responses, and better physiological-like tension responses after xenotransplantation (XTP) in ACI/NKyo rats compared with the results obtained after XTP using detergent decellularized vascular grafts (SDS-DFA). In conclusion, ScCO2 is an excellent decellularization technique in the fabrication of biocompatible vascular grafts and has tremendous application in vascular regenerative medicine.
Collapse
Affiliation(s)
- Shih-Ying Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shun Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Virginia, USA
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co. Ltd, Kaoshiung, Taiwan
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Guo J, Huang J, Lei S, Wan D, Liang B, Yan H, Liu Y, Feng Y, Yang S, He J, Kong D, Shi J, Wang S. Construction of Rapid Extracellular Matrix-Deposited Small-Diameter Vascular Grafts Induced by Hypoxia in a Bioreactor. ACS Biomater Sci Eng 2023; 9:844-855. [PMID: 36723920 DOI: 10.1021/acsbiomaterials.2c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular disease has become one of the most globally prevalent diseases, and autologous or vascular graft transplantation has been the main treatment for the end stage of the disease. However, there are no commercialized small-diameter vascular graft (SDVG) products available. The design of SDVGs is promising in the future, and SDVG preparation using an in vitro bioreactor is a favorable method, but it faces the problem of long-term culture of >8 weeks. Herein, we used different oxygen (O2) concentrations and mechanical stimulation to induce greater secretion of extracellular matrix (ECM) from cells in vitro to rapidly prepare SDVGs. Culturing with 2% O2 significantly increased the production of the ECM components and growth factors of human dermal fibroblasts (hDFs). To accelerate the formation of ECM, hDFs were seeded on a polycaprolactone (PCL) scaffold and cultured in a flow culture bioreactor with 2% O2 for only 3 weeks. After orthotopic transplantation in rat abdominal aorta, the cultured SDVGs (PCL-decellularized ECM) showed excellent endothelialization and smooth muscle regeneration. The vascular grafts cultured with hypoxia and mechanical stimulation could accelerate the reconstruction speed and obtain an improved therapeutic effect and thereby provide a new research direction for improving the production and supply of SDVGs.
Collapse
Affiliation(s)
- Jingyue Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Boyuan Liang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yuming Feng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
28
|
Williams LN, Sharma A, Liao J. Structure and Mechanics of Native and Decellularized Porcine Cranial Dura Mater. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
29
|
Ratner B. Vascular Grafts: Technology Success/Technology Failure. BME FRONTIERS 2023; 4:0003. [PMID: 37849668 PMCID: PMC10521696 DOI: 10.34133/bmef.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 10/19/2023] Open
Abstract
Vascular prostheses (grafts) are widely used for hemodialysis blood access, trauma repair, aneurism repair, and cardiovascular reconstruction. However, smaller-diameter (≤4 mm) grafts that would be valuable for many reconstructions have not been achieved to date, although hundreds of papers on small-diameter vascular grafts have been published. This perspective article presents a hypothesis that may open new research avenues for the development of small-diameter vascular grafts. A historical review of the vascular graft literature and specific types of vascular grafts is presented focusing on observations important to the hypothesis to be presented. Considerations in critically reviewing the vascular graft literature are discussed. The hypothesis that perhaps the "biocompatible biomaterials" comprising our vascular grafts-biomaterials that generate dense, nonvascularized collagenous capsules upon implantation-may not be all that biocompatible is presented. Examples of materials that heal with tissue reconstruction and vascularity, in contrast to the fibrotic encapsulation, are offered. Such prohealing materials may lead the way to a new generation of vascular grafts suitable for small-diameter reconstructions.
Collapse
Affiliation(s)
- Buddy Ratner
- Center for Dialysis Innovation (CDI), Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Shakeel A, Corridon PR. Mitigating challenges and expanding the future of vascular tissue engineering-are we there yet? Front Physiol 2023; 13:1079421. [PMID: 36685187 PMCID: PMC9846051 DOI: 10.3389/fphys.2022.1079421] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Mudigonda J, Onohara D, Amedi A, Suresh KS, Kono T, Corporan D, Padala M. In vivo efficacy of a polymer layered decellularized matrix composite as a cell honing cardiovascular tissue substitute. Mater Today Bio 2022; 17:100451. [DOI: 10.1016/j.mtbio.2022.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
|
32
|
Jenndahl L, Österberg K, Bogestål Y, Simsa R, Gustafsson-Hedberg T, Stenlund P, Petronis S, Krona A, Fogelstrand P, Strehl R, Håkansson J. Personalized tissue-engineered arteries as vascular graft transplants: A safety study in sheep. Regen Ther 2022; 21:331-341. [PMID: 36110971 PMCID: PMC9463533 DOI: 10.1016/j.reth.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient’s own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization in vivo. Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine in vivo study as a potential alternative for vein grafting. In this study, personalized tissue engineered arteries (P-TEA) were developed using the same methodology and evaluated for safety in a sheep in vivo model of carotid artery transplantation. Five personalized arteries were transplanted to carotid arteries and analyzed for safety and patency as well as with histology after four months in vivo. All grafts were fully patent without any occlusion or stenosis. The tissue was well cellularized with a continuous endothelial cell layer covering the luminal surface, revascularized adventitia with capillaries and no sign of rejection or infection. In summary, the results indicate that P-TEA is safe to use and has potential as clinical grafts. Safety and functionality evaluation of a tissue engineered ATMP in a sheep model of carotid transplantation. Efficient cellularization of a personalized tissue engineered artery in vivo. Personalized tissue engineered artery fully patent after four months in vivo.
Collapse
Affiliation(s)
- Lachmi Jenndahl
- VERIGRAFT AB, Arvid Wallgrensbacke 20, 413 46, Göteborg, Sweden
| | - Klas Österberg
- Sahlgrenska Academy, Institution of Medicine, Department of Molecular and Clinical Medicine, Blå Stråket 5 B Wallenberg Laboratory, 41345 Gothenburg, Sweden
| | - Yalda Bogestål
- RISE Research Institutes of Sweden, Materials and Production, Brinellgatan 4, 504 62 Borås, Sweden
| | - Robin Simsa
- VERIGRAFT AB, Arvid Wallgrensbacke 20, 413 46, Göteborg, Sweden.,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Patrik Stenlund
- RISE Research Institutes of Sweden, Materials and Production, Brinellgatan 4, 504 62 Borås, Sweden
| | - Sarunas Petronis
- RISE Research Institutes of Sweden, Materials and Production, Brinellgatan 4, 504 62 Borås, Sweden
| | - Annika Krona
- RISE Research Institutes of Sweden, Agriculture and Food, Box 5401, 402 29 Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Raimund Strehl
- VERIGRAFT AB, Arvid Wallgrensbacke 20, 413 46, Göteborg, Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden, Materials and Production, Brinellgatan 4, 504 62 Borås, Sweden.,Gothenburg University, Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg, Sweden
| |
Collapse
|
33
|
Rizzi S, Mantero S, Boschetti F, Pesce M. Luminal endothelialization of small caliber silk tubular graft for vascular constructs engineering. Front Cardiovasc Med 2022; 9:1013183. [PMID: 36465472 PMCID: PMC9708712 DOI: 10.3389/fcvm.2022.1013183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
The constantly increasing incidence of coronary artery disease worldwide makes necessary to set advanced therapies and tools such as tissue engineered vessel grafts (TEVGs) to surpass the autologous grafts [(i.e., mammary and internal thoracic arteries, saphenous vein (SV)] currently employed in coronary artery and vascular surgery. To this aim, in vitro cellularization of artificial tubular scaffolds still holds a good potential to overcome the unresolved problem of vessel conduits availability and the issues resulting from thrombosis, intima hyperplasia and matrix remodeling, occurring in autologous grafts especially with small caliber (<6 mm). The employment of silk-based tubular scaffolds has been proposed as a promising approach to engineer small caliber cellularized vascular constructs. The advantage of the silk material is the excellent manufacturability and the easiness of fiber deposition, mechanical properties, low immunogenicity and the extremely high in vivo biocompatibility. In the present work, we propose a method to optimize coverage of the luminal surface of silk electrospun tubular scaffold with endothelial cells. Our strategy is based on seeding endothelial cells (ECs) on the luminal surface of the scaffolds using a low-speed rolling. We show that this procedure allows the formation of a nearly complete EC monolayer suitable for flow-dependent studies and vascular maturation, as a step toward derivation of complete vascular constructs for transplantation and disease modeling.
Collapse
Affiliation(s)
- Stefano Rizzi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Ph.D. Program in Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Federica Boschetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
34
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
35
|
Choi M, Yang YB, Park S, Rahaman S, Tripathi G, Lee BT. Effect of Co-culture of mesenchymal stem cell and glomerulus endothelial cell to promote endothelialization under optimized perfusion flow rate in whole renal ECM scaffold. Mater Today Bio 2022; 17:100464. [PMID: 36325425 PMCID: PMC9619032 DOI: 10.1016/j.mtbio.2022.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
In recent era, many researches on implantable bio-artificial organs has been increased owing to large gap between donors and receivers. Comprehensive organ based researches on perfusion culture for cell injury using different flow rate have not been conducted at the cellular level. The present study investigated the co-culture of rat glomerulus endothelial cell (rGEC) and rat bone marrow mesenchymal stem cells (rBMSC) to develop micro vascularization in the kidney scaffolds culturing by bioreactor system. To obtain kidney scaffold, extracted rat kidneys were decellularized by 1% sodium dodecyl sulfate (SDS), 1% triton X-100, and distilled water. Expanded rGECs were injected through decellularized kidney scaffold artery and cultured using bioreactor system. Vascular endothelial cells adhered and proliferated on the renal ECM scaffold in the bioreactor system for 3, 7 and 14 days. Static, 1 ml/min and 2 ml/min flow rates (FR) were tested and among them, 1 ml/min flow rate was selected based on cell viability, glomerulus character, inflammation/endothelialization proteins expression level. However, the flow injury was still existed on primary cell cultured at vessel in kidney scaffold. Therefore, co-culture of rGEC + rBMSC found suitable to possibly solve this problem and resulted increased cell proliferation and micro-vascularization in the glomerulus, reducing inflammation and cell death which induced by flow injury. The optimized perfusion rate under rGEC + rBMSC co-culture conditions resulted in enhanced endocellularization to make ECM derived implantable renal scaffold and might be useful as a way of treatment of the acute renal failure.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Yu-Bin Yang
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea,Corresponding author. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University.
| |
Collapse
|
36
|
Su Z, Xing Y, Wang F, Xu Z, Gu Y. Biological small-calibre tissue engineered blood vessels developed by electrospinning and in-body tissue architecture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:67. [PMID: 36178545 PMCID: PMC9525370 DOI: 10.1007/s10856-022-06689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
There are no suitable methods to develop the small-calibre tissue-engineered blood vessels (TEBVs) that can be widely used in the clinic. In this study, we developed a new method that combines electrospinning and in-body tissue architecture(iBTA) to develop small-calibre TEBVs. Electrospinning imparted mechanical properties to the TEBVs, and the iBTA imparted biological properties to the TEBVs. The hybrid fibres of PLCL (poly(L-lactic-co-ε-caprolactone) and PU (Polyurethane) were obtained by electrospinning, and the fibre scaffolds were then implanted subcutaneously in the abdominal area of the rabbit (as an in vivo bioreactor). The biotubes were harvested after four weeks. The mechanical properties of the biotubes were most similar to those of the native rabbit aorta. Biotubes and the PLCL/PU vascular scaffolds were implanted into the rabbit carotid artery. The biotube exhibited a better patency rate and certain remodelling ability in the rabbit model, which indicated the potential use of this hybridization method to develop small-calibre TEBVs. Sketch map of developing the biotube. The vascular scaffolds were prepared by electrospinning (A). Silicone tube was used as the core, and the vascular scaffold was used as the shell (B). The vascular scaffold and silicone tube were implanted subcutaneously in the abdominal area of the rabbit (C). The biotube was extruded from the silicone tube after 4 weeks ofembedding (D). The biotube was implanted for the rabbit carotid artery (E).
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, 100045, Beijing, China
| | - Fei Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zeqin Xu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
37
|
Fooladi S, Faramarz S, Dabiri S, Kajbafzadeh A, Nematollahi MH, Mehrabani M. An efficient strategy to recellularization of a rat aorta scaffold: an optimized decellularization, detergent removal, and Apelin-13 immobilization. Biomater Res 2022; 26:46. [PMID: 36138491 PMCID: PMC9502639 DOI: 10.1186/s40824-022-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tissue engineering of native vessels is an alternative approach for patients with vascular disease who lack sufficient saphenous vein or other suitable conduits for autologous vascular graft. Moreover, the harvest of vessels prolongs the surgical procedure and it may lead to the morbidity of donor site in elder patients: therefore, it seems that the use of tissue-engineered vessels would be an attractive and less invasive substitute for autologous vascular grafts. Apelin-13 plays a pivotal role in cell proliferation, survival, and attachment; therefore, covalent attachment of apelin-13 to the acellular scaffolds might be a favorable approach for improving recellularization efficacy. Methods In the present study, the decellularization process was performed using various detergents. Afterward, the efficacy of decellularization procedure was evaluated using multiple approaches including assessment of DNA, hydroxyproline, and GAG content as well as Masson’s trichrome and orcein staining used for collagen and elastin determination. Subsequently, the scaffold was bioconjugated with apelin-13 using the EDC-NHS linker and acellular scaffolds were recellularized using fibroblasts, endothelial cells, and smooth muscle cells. SEM images and characterization methods were also used to evaluate the effect of apelin-13 attachment to the acellular scaffold on tissue recellularization. We also developed a novel strategy to eliminate the remnant detergents from the scaffold and increase cell viability by incubating acellular scaffolds with Bio-Beads SM-2 resin. Testometric tensile testing machine was also used for the assessment of mechanical properties and uniaxial tensile strength of decellularized and recellularized vessels compared to that of native tissues. Results Our results proposed 16-h perfusion of 0.25% sodium dodecyl sulfate (SDS) + 0.5% Triton X-100 combination to the vessel as an optimal decellularization protocol in terms of cell elimination as well as extracellular matrix preservation. Furthermore, the results demonstrated considerable elevation of cell adhesion and proliferation in scaffolds bioconjugated with apelin-13. The immunohistochemical (IHC) staining of CD31, α-SMA, and vimentin markers suggested placement of seeded cells in the suitable sites and considerable elevation of cell attachment within the scaffolds bioconjugated with apelin-13 compared to the non-bioconjugated, and decellularized groups. Moreover, the quantitative analysis of IHC staining of CD31, α-SMA, and vimentin markers suggested considerable elevation in the number of endothelial, smooth muscle, and fibroblast cells in the recellularized scaffolds bioconjugated with apelin-13 group (1.4% ± 0.02, 6.66% ± 0.23, and 9.87% ± 0.13%, respectively) compared to the non-bioconjugated scaffolds (0.03% ± 0.01, 0.28% ± 0.01, and 1.2% ± 0.09%, respectively) and decellularized groups (0.03% ± 0.007, 0.05% ± 0.01, and 0.13% ±0.005%, respectively). Although the maximum strain to the rupture was reduced in tissues decellularized using 0.5% SDS and CHAPS compared to that of native ones (116% ± 6.79, 139.1% ± 3.24, and 164% ± 8.54%, respectively), ultimate stress was decreased in all decellularized and recellularized groups. Besides, our results indicated that cell viability on the 1st, 3rd, and 7th day was 100.79% ± 0.7, 100.34% ± 0.08, and 111.24% ± 1.7% for the decellularized rat aorta conjugated with apelin-13, which was incubated for 48-h with Bio-Beads SM-2, and 73.37% ± 7.99, 47.6% ± 11.69, and 27.3% ± 7.89% for decellularized rat aorta scaffolds conjugated with apelin-13 and washed 48-h by PBS, respectively. These findings reveal that the incubation of the scaffold with Bio-Beads SM-2 is a novel and promising approach for increasing cell viability and growth within the scaffold. Conclusions In conclusion, our results provide a platform in which xenograft vessels are decellularized properly in a short time, and the recellularization process is significantly improved after the bioconjugation of the acellular scaffold with apelin-13 in terms of cell adhesion and viability within the scaffold. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cells Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolmohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Clinical Biochemistry, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
38
|
Chen J, Zhou X, Sun W, Zhang Z, Teng W, Wang F, Sun H, Zhang W, Wang J, Yu X, Ye Z, Li W. Vascular Derived ECM Improves Therapeutic Index of BMP-2 and Drives Vascularized Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107991. [PMID: 35218305 DOI: 10.1002/smll.202107991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Vascularized osteogenesis is essential for successful bone regeneration, yet its realization during large size bone defect healing remains challenging due to the difficulty to couple multiple biological processes. Herein, harnessing the intrinsic angiogenic potential of vascular derived extracellular matrix (vECM) and its specific affinity to growth factors, a vECM/GelMA based hybrid hydrogel delivery system is constructed to achieve optimized bone morphogenetic protein-2 (BMP-2) therapeutic index and provide intrinsic angiogenic induction during bone healing. The incorporation of vECM not only effectively regulates BMP-2 kinetics to match the bone healing timeframe, but also promotes angiogenesis both in vitro and in vivo. In vivo results also show that vECM-mediated BMP-2 release remarkably enhances vascularized bone formation for critical size bone defects. In particular, blood vessel ingrowth stained with CD31 marker in the defect area is substantially encouraged over the course of healing, suggesting incorporation of vECM served roles in both angiogenesis and osteogenesis. Thus, the authors' study exemplifies that affinity of growth factor towards ECM may be a promising strategy to be leveraged to develop sophisticated delivery systems endowed with desirable properties for regenerative medicine applications.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wenquan Sun
- School of Medical and Food, University of Shanghai for Science and Technology, Shanghai, 201210, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jianwei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
39
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
Sembiring YE, Ledyastatin RA, Nurrahmah A, Sulistyaningsih NK, Sinatra JAR, Puruhito I, Suroto H. Comparative Assessment of Various Concentration and Exposure Time of Sodium Dodecyl Sulfate as Decellularization Agents for Small-Vessels Vascular Tissue Engineering. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Finding the optimum vascular grafts (VG) to replace damaged blood arteries in cardiac surgery is still a work in progress. To be employed, a tissue-engineered VG (TEVG) must have the appropriate biological and mechanical qualities. Decellularized arteries may be a better TEVG than synthetic grafts because of their natural three-dimensional architecture.
AIM: The goal of this study was to compare different concentrations and times of sodium dodecyl sulfate (SDS) to decellularize tissue to find the best decellularized VG.
METHODS: In all decellularized scaffolds, which are 1% SDS-2 weeks group, hematoxylin and eosin and Masson’s trichrome staining exhibited looser collagen networks and fewer nuclei.
RESULTS: The orientation of collagen fibers was identical to native vascular scaffolds. Collagen I deposition was seen in the immunohistochemistry assay. A tensile strength test revealed that the decellularized scaffold (0.5% SDS for 4 weeks and 0.5% SDS for 2 weeks) had exceeded the native arteries’ maximal strength. In comparison to 1% SDS in 4 weeks treated groups, scanning electron microscopy following decellularization revealed no endothelial cells on the inner side of 1% SDS in 2 weeks group with minimum extracellular matrix damage. The endothelial cells remained marginally visible on the inner side of all 0.5% SDS treated groups. The 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium bromide test was used to determine the cytotoxicity of the decellularized scaffolds.
CONCLUSION: This study reveals that exposing a bovine mesenteric artery to 1% SDS for 2 weeks is an excellent procedure for extracting the most acellular VG, potentially serving as a biological scaffold for TEVGs.
Collapse
|
41
|
Kitsuka T, Hama R, Ulziibayar A, Matsuzaki Y, Kelly J, Shinoka T. Clinical Application for Tissue Engineering Focused on Materials. Biomedicines 2022; 10:1439. [PMID: 35740460 PMCID: PMC9220152 DOI: 10.3390/biomedicines10061439] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular-related medical conditions remain a significant cause of death worldwide despite the advent of tissue engineering research more than half a century ago. Although autologous tissue is still the preferred treatment, donor tissue is limited, and there remains a need for tissue-engineered vascular grafts (TEVGs). The production of extensive vascular tissue (>1 cm3) in vitro meets the clinical needs of tissue grafts and biological research applications. The use of TEVGs in human patients remains limited due to issues related to thrombogenesis and stenosis. In addition to the advancement of simple manufacturing methods, the shift of attention to the combination of synthetic polymers and bio-derived materials and cell sources has enabled synergistic combinations of vascular tissue development. This review details the selection of biomaterials, cell sources and relevant clinical trials related to large diameter vascular grafts. Finally, we will discuss the remaining challenges in the tissue engineering field resulting from complex requirements by covering both basic and clinical research from the perspective of material design.
Collapse
Affiliation(s)
- Takahiro Kitsuka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Rikako Hama
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - John Kelly
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
42
|
In Vitro Tissue Reconstruction Using Decellularized Pericardium Cultured with Cells for Ligament Regeneration. Polymers (Basel) 2022; 14:polym14122351. [PMID: 35745927 PMCID: PMC9229290 DOI: 10.3390/polym14122351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Recent applications of decellularized tissues have included the ectopic use of their sheets and powders for three-dimensional (3D) tissue reconstruction. Decellularized tissues are fabricated with the desired functions to employ them to a target tissue. The aim of this study was to develop a 3D reconstruction method using a recellularized pericardium to overcome the difficulties in cell infiltration into tight and dense tissues, such as ligament and tendon tissues. Decellularized pericardial tissues were prepared using the high hydrostatic pressurization (HHP) and surfactant methods. The pericardium consisted of bundles of aligned fibers. The bundles were slightly disordered in the surfactant decellularization method compared to the HHP decellularization method. The mechanical properties of the pericardium were maintained after the HHP and surfactant decellularizations. The HHP-decellularized pericardium was rolled up into a cylindrical formation. Its mechanical behavior was similar to that of a porcine anterior cruciate ligament in tensile testing. NIH3T3, C2C12, and mesenchymal stem cells were adhered with elongation and alignment on the HHP- and surfactant-decellularized pericardia, with dependences on the cell type and decellularization method. When the recellularized pericardium was rolled up into a cylinder formation and cultured by hanging circulation for 2 days, the cylinder formation and cellular elongation and alignment were maintained on the decellularized pericardium, resulting in a layer structure of cells in a cross-section. According to these results, the 3D-reconstructed decellularized pericardium with cells has the potential to be an attractive alternative to living tissues, such as ligament and tendon tissues.
Collapse
|
43
|
Peng X, Cheng C, Yue L, Liu Y, Yu X. A Comparative Study Between Porcine Peritoneum and Pericardium as Cardiovascular Material. Tissue Eng Part C Methods 2022; 28:272-284. [PMID: 35611974 DOI: 10.1089/ten.tec.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decellularized porcine pericardium has many applications in the cardiovascular field for its excellent properties. The peritoneum is a single-layer bio-dialysis membrane with many similarities and differences in physical characteristics, biochemical composition, and structure to the pericardium. The limited available literature suggests that, similar to the pericardium, the peritoneum has good application potential in the field of cardiovascular substitute materials. This research focused on comparing the differences between decellularized peritoneum and decellularized pericardium in microstructure, biochemical composition, mechanical properties, hemocompatibility, in vitro enzymatic degradation, in vitro calcification, cytocompatibility, and other vital indicators. The peritoneum was consistent with pericardium in terms of fibrous structure, hemocompatibility, in vitro calcification, and cytocompatibility. The peritoneal elastic fiber content (219 μg/mg) was significantly higher than that of the pericardium (66 μg/mg), resulting in two to three times higher maximum load (21.1 N) and burst pressure (1309 mmHg), and better performance than the pericardium in terms of in vitro resistance to enzymatic degradation. In the cardiovascular field, decellularized peritoneum can be used as vascular substitute material. Impact statement There are many similarities between the embryonic origin and morphological structure of the porcine peritoneum and the porcine pericardium, but little research has been done on the use of the porcine peritoneum as a biomaterial. In this compared research, we showed that porcine peritoneum had better resistance to enzymatic degradation, better stretching, and more suitable burst pressure for being used as vascular substitute material. This research is the first to describe the structural composition of porcine peritoneum and its advantageous properties as a cardiovascular material.
Collapse
Affiliation(s)
- Xu Peng
- College of Polymer Science and Engineering, Experimental and Research Animal Institute, Sichuan University, Chengdu, China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Lunli Yue
- Department of Oncology Hematology, Western Theater Command Air Force Hospital, Chengdu, China
| | - Yan Liu
- Experimental and Research Animal Institute, Sichuan University, Chengdu, China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Decellularized Organ-Derived Scaffold Is a Promising Carrier for Human Induced Pluripotent Stem Cells-Derived Hepatocytes. Cells 2022; 11:cells11081258. [PMID: 35455938 PMCID: PMC9025569 DOI: 10.3390/cells11081258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for elucidating disease pathology and therapy. The mass supply of hiPSC-derived cells is technically feasible. Carriers that can contain a large number of hiPSC-derived cells and evaluate their functions in vivo-like environments will become increasingly important for understanding disease pathogenesis or treating end-stage organ failure. hiPSC-derived hepatocyte-like cells (hiPSC-HLCs; 5 × 108) were seeded into decellularized organ-derived scaffolds under circumfusion culture. The scaffolds were implanted into immunodeficient microminiature pigs to examine their applicability in vivo. The seeded hiPSC-HLCs demonstrated increased albumin secretion and up-regulated cytochrome P450 activities compared with those in standard two-dimensional culture conditions. Moreover, they showed long-term survival accompanied by neovascularization in vivo. The decellularized organ-derived scaffold is a promising carrier for hiPSC-derived cells for ex vivo and in vivo use and is an essential platform for regenerative medicine and research.
Collapse
|
45
|
Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10:15-31. [PMID: 34901526 PMCID: PMC8637010 DOI: 10.1016/j.bioactmat.2021.09.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
The application of scaffolding materials is believed to hold enormous potential for tissue regeneration. Despite the widespread application and rapid advance of several tissue-engineered scaffolds such as natural and synthetic polymer-based scaffolds, they have limited repair capacity due to the difficulties in overcoming the immunogenicity, simulating in-vivo microenvironment, and performing mechanical or biochemical properties similar to native organs/tissues. Fortunately, the emergence of decellularized extracellular matrix (dECM) scaffolds provides an attractive way to overcome these hurdles, which mimic an optimal non-immune environment with native three-dimensional structures and various bioactive components. The consequent cell-seeded construct based on dECM scaffolds, especially stem cell-recellularized construct, is considered an ideal choice for regenerating functional organs/tissues. Herein, we review recent developments in dECM scaffolds and put forward perspectives accordingly, with particular focus on the concept and fabrication of decellularized scaffolds, as well as the application of decellularized scaffolds and their combinations with stem cells (recellularized scaffolds) in tissue engineering, including skin, bone, nerve, heart, along with lung, liver and kidney.
Collapse
Affiliation(s)
| | | | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rubei Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
46
|
Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:81-98. [PMID: 35837341 PMCID: PMC9255792 DOI: 10.12336/biomatertransl.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| |
Collapse
|
47
|
Mudigonda J, Xu D, Amedi A, Lane BA, Corporan D, Wang V, Padala M. A Biohybrid Material With Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Front Cardiovasc Med 2022; 9:807255. [PMID: 35402573 PMCID: PMC8987446 DOI: 10.3389/fcvm.2022.807255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the feasibility of a hybrid material in which decellularized pericardial extracellular matrix is functionalized with polymeric nanofibers, for use as a cardiovascular tissue substitute.BackgroundA cardiovascular tissue substitute, which is gradually resorbed and is replaced by host's native tissue, has several advantages. Especially in children and young adults, a resorbable material can be useful in accommodating growth, but also enable rapid endothelialization that is necessary to avoid thrombotic complications. In this study, we report a hybrid material, wherein decellularized pericardial matrix is functionalized with a layer of polymeric nanofibers, to achieve the mechanical strength for implantation in the cardiovascular system, but also have enhanced cell honing capacity.MethodsPericardial sacs were decellularized with sodium deoxycholate, and polycaprolactone-chitosan fibers were electrospun onto the matrix. Tissue-polymer interaction was evaluated using spectroscopic methods, and the mechanical properties of the individual components and the hybrid material were quantified. In-vitro blood flow loop studies were conducted to assess hemocompatibility and cell culture methods were used to assess biocompatibility.ResultsEncapsulation of the decellularized matrix with 70 μm thick matrix of polycaprolactone-chitosan nanofibers, was feasible and reproducible. Spectroscopy of the cross-section depicted new amide bond formation and C–O–C stretch at the interface. An average peel strength of 56.13 ± 11.87 mN/mm2 was measured, that is sufficient to withstand a high shear of 15 dynes/cm2 without delamination. Mechanical strength and extensibility ratio of the decellularized matrix alone were 18,000 ± 4,200 KPa and 0.18 ± 0.03% whereas that of the hybrid was higher at 20,000 ± 6,600 KPa and 0.35 ± 0.20%. Anisotropy index and stiffness of the biohybrid were increased as well. Neither thrombus formation, nor platelet adhesion or hemolysis was measured in the in-vitro blood flow loop studies. Cellular adhesion and survival were adequate in the material.ConclusionEncapsulating a decellularized matrix with a polymeric nanofiber coating, has favorable attributes for use as a cardiovascular tissue substitute.
Collapse
Affiliation(s)
- Jahnavi Mudigonda
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Dongyang Xu
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Alan Amedi
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Brooks A. Lane
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Daniella Corporan
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Vivian Wang
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Muralidhar Padala
| |
Collapse
|
48
|
Liu Y, Chen C, Xie X, Yuan H, Tang Z, Qian T, Liu Y, Song M, Liu S, Lu T, Wu Z. Photooxidation and Pentagalloyl Glucose Cross-Linking Improves the Performance of Decellularized Small-Diameter Vascular Xenograft In Vivo. Front Bioeng Biotechnol 2022; 10:816513. [PMID: 35402413 PMCID: PMC8987116 DOI: 10.3389/fbioe.2022.816513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Small-diameter vascular grafts have a significant need in peripheral vascular surgery and procedures of coronary artery bypass graft (CABG); however, autografts are not always available, synthetic grafts perform poorly, and allografts and xenografts dilate, calcify, and induce inflammation after implantation. We hypothesized that cross-linking of decellularized xenogeneic vascular grafts would improve the mechanical properties and biocompatibility and reduce inflammation, degradation, and calcification in vivo. To test this hypothesis, the bovine internal mammary artery (BIMA) was decellularized by detergents and ribozymes with sonication and perfusion. Photooxidation and pentagalloyl glucose (PGG) were used to cross-link the collagen and elastin fibers of decellularized xenografts. Modified grafts’ characteristics and biocompatibility were studied in vitro and in vivo; the grafts were implanted as transposition grafts in the subcutaneous of rats and the abdominal aorta of rabbits. The decellularized grafts were cross-linked by photooxidation and PGG, which improved the grafts’ biomechanical properties and biocompatibility, prevented elastic fibers from early degradation, and reduced inflammation and calcification in vivo. Short-term aortic implants in the rabbits showed collagen regeneration and differentiation of host smooth muscle cells. No occlusion and stenosis occurred due to remodeling and stabilization of the neointima. A good patency rate (100%) was maintained. Notably, implantation of non-treated grafts exhibited marked thrombosis, an inflammatory response, calcification, and elastin degeneration. Thus, photooxidation and PGG cross-linking are potential tools for improving grafts’ biological performance within decellularized small-diameter vascular xenografts.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Qian
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ting Lu, ; Zhongshi Wu,
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Ting Lu, ; Zhongshi Wu,
| |
Collapse
|
49
|
Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int J Mol Sci 2022; 23:ijms23063310. [PMID: 35328732 PMCID: PMC8954945 DOI: 10.3390/ijms23063310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.
Collapse
|
50
|
Huttala O, Loreth D, Staff S, Tanner M, Wikman H, Ylikomi T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines 2022; 10:biomedicines10020271. [PMID: 35203480 PMCID: PMC8869401 DOI: 10.3390/biomedicines10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Vascularization plays an important role in the microenvironment of the tumor. Therefore, it should be a key element to be considered in the development of in vitro cancer assays. In this study, we decellularized in vitro capillaries to remove genetic material and optimized the medium used to increase the robustness and versatility of applications. The growth pattern and drug responses of cancer cell lines and patient-derived primary cells were studied on decellularized capillaries. Interestingly, two distinct growth patterns were seen when cancer cells were grown on decellularized capillaries: “network” and “cluster”. Network formation correlated with the metastatic properties of the cells and cluster formation was observed in non-metastatic cells. Drug responses of patient-derived cells correlated better with clinical findings when cells were cultured on decellularized capillaries compared with those cultured on plastic. Decellularized capillaries provide a novel method for cancer cell culture applications. It bridges the gap between complex 3D culture methods and traditional 2D culture methods by providing the ease and robustness of 2D culture as well as an in vivo-like microenvironment and scaffolding for 3D cultures.
Collapse
Affiliation(s)
- Outi Huttala
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Correspondence: ; Tel.: +358-401909721
| | - Desiree Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Synnöve Staff
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Tanner
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Oncology, Tampere University Hospital, 33520 Tampere, Finland
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Timo Ylikomi
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
| |
Collapse
|