1
|
Peng Q, Shrestha A, Zhang Y, Fan J, Yu F, Wang G. How lignin biosynthesis responds to nitrogen in plants: a scoping review. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39032003 DOI: 10.1111/plb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 07/22/2024]
Abstract
Nitrogen (N) plays a critical role in the functioning of key amino acids and synthetic enzymes responsible for the various stages of lignin biosynthesis. However, the precise mechanisms through which N influences lignin biosynthesis have not been fully elucidated. This scoping review explores how lignin biosynthesis responds to N in plants. A systematic search of the literature in several databases was conducted using relevant keywords. Only 44 of the 1842 selected studies contained a range of plant species, experimental conditions, and research approaches. Lignin content, structure, and biosynthetic pathways in response to N are discussed, and possible response mechanisms of lignin under low N are proposed. Among the selected studies, 64.52% of the studies reter to lignin content found a negative correlation between N availability and lignin content. Usually, high N decreases the lignin content, delays cell lignification, increases p-hydroxyphenyl propane (H) monomer content, and regulates lignin synthesis through the expression of key genes (PAL, 4CL, CCR, CAD, COMT, LAC, and POD) encoding miRNAs and transcription factors (e.g., MYB, bHLH). N deficiency enhances lignin synthesis through the accumulation of phenylpropanoids, phenolics, and soluble carbohydrates, and indirect changes in phytohormones, secondary metabolites, etc. This review provides new insights and important references for future studies on the regulation of lignin biosynthesis.
Collapse
Affiliation(s)
- Q Peng
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - A Shrestha
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Zhang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J Fan
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - F Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - G Wang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Borysiuk K, Ostaszewska-Bugajska M, Kryzheuskaya K, Gardeström P, Szal B. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. PLANT CELL REPORTS 2022; 41:2393-2413. [PMID: 36242617 PMCID: PMC9700585 DOI: 10.1007/s00299-022-02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Elevated methylglyoxal levels contribute to ammonium-induced growth disorders in Arabidopsis thaliana. Methylglyoxal detoxification pathway limitation, mainly the glyoxalase I activity, leads to enhanced sensitivity of plants to ammonium nutrition. Ammonium applied to plants as the exclusive source of nitrogen often triggers multiple phenotypic effects, with severe growth inhibition being the most prominent symptom. Glycolytic flux increase, leading to overproduction of its toxic by-product methylglyoxal (MG), is one of the major metabolic consequences of long-term ammonium nutrition. This study aimed to evaluate the influence of MG metabolism on ammonium-dependent growth restriction in Arabidopsis thaliana plants. As the level of MG in plant cells is maintained by the glyoxalase (GLX) system, we analyzed MG-related metabolism in plants with a dysfunctional glyoxalase pathway. We report that MG detoxification, based on glutathione-dependent glyoxalases, is crucial for plants exposed to ammonium nutrition, and its essential role in ammonium sensitivity relays on glyoxalase I (GLXI) activity. Our results indicated that the accumulation of MG-derived advanced glycation end products significantly contributes to the incidence of ammonium toxicity symptoms. Using A. thaliana frostbite1 as a model plant that overcomes growth repression on ammonium, we have shown that its resistance to enhanced MG levels is based on increased GLXI activity and tolerance to elevated MG-derived advanced glycation end-product (MAGE) levels. Furthermore, our results show that glyoxalase pathway activity strongly affects cellular antioxidative systems. Under stress conditions, the disruption of the MG detoxification pathway limits the functioning of antioxidant defense. However, under optimal growth conditions, a defect in the MG detoxification route results in the activation of antioxidative systems.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
3
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Szal B. Respiratory Burst Oxidase Homolog D as a Modulating Component of Oxidative Response under Ammonium Toxicity. Antioxidants (Basel) 2022; 11:antiox11040703. [PMID: 35453389 PMCID: PMC9031508 DOI: 10.3390/antiox11040703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Delayed growth, a visible phenotypic component of the so-called ammonium syndrome, occurs when ammonium is the sole inorganic nitrogen source. Previously, we have shown that modification of apoplastic reactive oxygen species (apROS) metabolism is a key factor contributing to plant growth retardation under ammonium nutrition. Here, we further analyzed the changes in apROS metabolism in transgenic plants with disruption of the D isoform of the respiratory burst oxidase homolog (RBOH) that is responsible for apROS production. Ammonium-grown Arabidopsisrbohd plants are characterized by up to 50% lower contents of apoplastic superoxide and hydrogen peroxide. apROS sensing markers such as OZF1 and AIR12 were downregulated, and the ROS-responsive signaling pathway, including MPK3, was also downregulated in rbohd plants cultivated using ammonium as the sole nitrogen source. Additionally, the expression of the cell-wall-integrity marker FER and peroxidases 33 and 34 was decreased. These modifications may contribute to phenomenon wherein ammonium inhibited the growth of transgenic plants to a greater extent than that of wild-type plants. Overall, this study indicated that due to disruption of apROS metabolism, rbohd plants cannot adjust to ammonium toxicity and are more sensitive to these conditions.
Collapse
|
4
|
Chen W, Meng C, Ji J, Li MH, Zhang X, Wu Y, Xie T, Du C, Sun J, Jiang Z, Shi S. Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions. TREE PHYSIOLOGY 2020; 40:1744-1761. [PMID: 32776117 DOI: 10.1093/treephys/tpaa101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) deficiency adversely affects tree growth. Additionally, γ-aminobutyric acid (GABA) is closely associated with growth and stress responses because of its effects on carbon (C) and N metabolism. However, little is known about its roles related to plant adaptations to N-deficient conditions. In this study, we analyzed the effects of GABA (0, 2 and 10 mM) applications on the growth traits and physiological responses of poplar (Populus alba × P. glandulosa '84K') seedlings under high N (HN) and low N (LN) conditions. We found that the added GABA interacted with N to affect more than half of the studied parameters, with greater effects in LN plants than in HN plants. Under LN conditions, the GABA application tended to increase poplar growth, accompanied by increased xylem fiber cell length and xylem width. In stems, exogenous GABA increased the abundance of non-structural carbohydrates (starch and sugars) and tricarboxylic acid cycle intermediates (succinate, malate and citrate), but had the opposite effect on the structural C contents (hemicellulose and lignin). Meanwhile, exogenous GABA increased the total soluble protein contents in leaves and stems, accompanied by significant increases in nitrate reductase, nitrite reductase and glutamine synthetase activities in leaves, but significant decreases in those (except for the increased glutamate synthetase activity) in stems. A multiple factorial analysis indicated that the nitrate assimilation pathway substantially influences poplar survival and growth in the presence of GABA under LN conditions. Interestingly, GABA applications also considerably attenuated the LN-induced increase in the activities of leaf antioxidant enzymes, including peroxidase and catalase, implying that GABA may regulate the relative allocation of C and N for growth activities by decreasing the energy cost associated with stress defense. Our results suggest that GABA enhances poplar growth and adaptation by regulating the C and N metabolic flux under N-deficient conditions.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, Freising 85354, Germany
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, Birmensdorf CH-8903, Switzerland
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenhe District, Shenyang 110016, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street 268, Nanguan District, Changchun 130024, China
| | - Xiaoman Zhang
- College of Landscape Architecture, Hebei Agricultural University, Lekai South Street 2596, Lianchi District, Baoding 071000, China
| | - Yanyan Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, LXiangshan Road, Haidian District, Beijing 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| |
Collapse
|
5
|
Rasmusson AG, Escobar MA, Hao M, Podgórska A, Szal B. Mitochondrial NAD(P)H oxidation pathways and nitrate/ammonium redox balancing in plants. Mitochondrion 2020; 53:158-165. [PMID: 32485334 DOI: 10.1016/j.mito.2020.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO3-) and/or reduced ammonium (NH4+). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden.
| | - Matthew A Escobar
- California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA
| | - Mengshu Hao
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden
| | - Anna Podgórska
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bożena Szal
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
6
|
Wu S, Cao G, Adil MF, Tu Y, Wang W, Cai B, Zhao D, Shamsi IH. Changes in water loss and cell wall metabolism during postharvest withering of tobacco (Nicotiana tabacum L.) leaves using tandem mass tag-based quantitative proteomics approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:121-132. [PMID: 32142985 DOI: 10.1016/j.plaphy.2020.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Withering is an important biological process accompanied by dehydration and cell wall metabolism in postharvest plant organs during curing/processing and storage. However, dynamics involved in cell wall metabolism and resultant water loss during withering in postharvest tobacco leaves is not well-documented. Here, tandem mass tag (TMT)-based quantitative proteomic analysis in postharvest tobacco leaves (cultivar K326) under different withering conditions was performed. In total, 11,556 proteins were detected, among which 496 differentially abundant proteins (DAPs) were identified. To elucidate the withering mechanism of tobacco leaves, 27 DAPs associated with cell wall metabolism were screened. In particular, pectin acetylesterases, glucan endo-1,3-beta-glucosidases, xyloglucan endotransglucosylase/hydrolase, alpha-xylosidase 1-like, probable galactinol-sucrose galactosyltransferases, endochitinase A, chitotriosidase-1-like and expansin were the key proteins responsible for the withering of postharvest tobacco leaves. These DAPs were mainly involved in pectin metabolism, cellulose, hemicellulose and galactose metabolism, amino sugar and nucleotide sugar metabolism as well as cell wall expansion. Furthermore, relative water content and softness values were significantly and positively correlated. Thus, dehydration and cell wall metabolism were crucial for tobacco leaf withering under different conditions. Nine candidate DAPs were confirmed by parallel reaction monitoring (PRM) technique. These results provide new insights into the withering mechanism underlying postharvest physiological regulatory networks in plants/crops.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research & Development of Fine Chemicals, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, PR China; Guizhou Academy of Tobacco Science, Guiyang, 550081, PR China
| | - Gaoyi Cao
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, PR China
| | - Yonggao Tu
- Guizhou Academy of Tobacco Science, Guiyang, 550081, PR China
| | - Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research & Development of Fine Chemicals, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, PR China; Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Bin Cai
- Hainan Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100, PR China
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research & Development of Fine Chemicals, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, PR China; Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China.
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
7
|
Editorial for Special Issue "Plant Mitochondria". Int J Mol Sci 2018; 19:ijms19123849. [PMID: 30513904 PMCID: PMC6321511 DOI: 10.3390/ijms19123849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
|