1
|
Wang H, Wu J, Hu M, Zhang H, Zhou X, Yang S, He K, Yan F, Jin H, Chen S, Zhao A. Effects of dietary supplement of ε-polylysine hydrochloride on laying performance, egg quality, serum parameters, organ index, intestinal morphology, gut microbiota and volatile fatty acids in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3069-3079. [PMID: 38072654 DOI: 10.1002/jsfa.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haoxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Shaojie Chen
- Zhejiang Silver-Elephant Bio-Engineering Co., Ltd, Taizhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Liao CH, Yen CC, Chen HL, Liu YH, Chen YH, Lan YW, Chen KR, Chen W, Chen CM. Novel Kefir Exopolysaccharides (KEPS) Mitigate Lipopolysaccharide (LPS)-Induced Systemic Inflammation in Luciferase Transgenic Mice through Inhibition of the NF-κB Pathway. Antioxidants (Basel) 2023; 12:1724. [PMID: 37760027 PMCID: PMC10525830 DOI: 10.3390/antiox12091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
A novel kefir exopolysaccharides (KEPS) derived from kefir grain fermentation were found to have a small molecular weight (12 kDa) compared to the traditionally high molecular weight (12,000 kDa) of kefiran (KE). KE has been shown to possess antioxidant, blood pressure-lowering, and immune-modulating effects. In this study, we characterized KEPS and KE and evaluated their anti-inflammatory properties in vitro using RAW264.7 macrophages. The main monosaccharide components were identified as glucose (98.1 ± 0.06%) in KEPS and galactose (45.36 ± 0.16%) and glucose (47.13 ± 0.06%) in KE, respectively. Both KEPS and KE significantly reduced IL-6 secretion in lipopolysaccharide (LPS)-stimulated macrophages. We further investigated their effects in LPS-induced systemic injury in male and female NF-κB-luciferase+/+ transgenic mice. Mice received oral KEPS (100 mg/kg) or KE (100 mg/kg) for seven days, followed by LPS or saline injection. KEPS and KE inhibited NF-κB signaling, as indicated by reduced luciferase expression and phosphorylated NF-κB levels. LPS-induced systemic injury increased luciferase signals, especially in the kidney, spleen, pancreas, lung, and gut tissues of female mice compared to male mice. Additionally, it upregulated inflammatory mediators in these organs. However, KEPS and KE effectively suppressed the expression of inflammatory mediators, including p-MAPK and IL-6. These findings demonstrate that KEPS can alleviate LPS-induced systemic damage by inhibiting NF-κB/MAPK signaling, suggesting their potential as a treatment for inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Chih-Ching Yen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan;
| | - Yu-Hsien Liu
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- Department of Internal Medicine, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Ying-Wei Lan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Ke-Rong Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Chuan-Mu Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Dou X, Yan D, Liu S, Gao L, Shan A. Thymol Alleviates LPS-Induced Liver Inflammation and Apoptosis by Inhibiting NLRP3 Inflammasome Activation and the AMPK-mTOR-Autophagy Pathway. Nutrients 2022; 14:nu14142809. [PMID: 35889766 PMCID: PMC9319298 DOI: 10.3390/nu14142809] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
Thymol is a natural antibacterial agent found in the essential oil extracted from thyme, which has been proven to be beneficial in food and medicine. Meanwhile, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and autophagy have been reported to play key roles in the progression of liver injury. However, the effects of thymol on the NLRP3 inflammasome and autophagy in protecting the liver remain unclear. The present study used a mouse model with liver injury induced by lipopolysaccharides (LPS) to investigate the regulatory mechanisms of thymol. We found that thymol alleviated LPS-induced liver structural damage, as judged by reduced inflammatory cell infiltration and improved structure. In addition, elevated levels of the liver damage indicators (alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin (TBIL)) dropped after thymol administration. The mRNA and protein expression of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-22), apoptosis-related genes (caspase3 and caspase9), and the activity of apoptosis-related genes (caspase3 and caspase9) were increased in LPS-treated livers, whereas the changes were alleviated after thymol administration. Thymol inhibited LPS-induced increment in lactate dehydrogenase (LDH) activity in primary hepatocytes of the mouse. In addition, thymol protected mice from liver injury by inhibiting NLRP3 inflammasome activation induced by LPS. Mechanistically, the present study indicates that thymol has liver protective activity resulting from the modulation of the AMP-activated protein kinase—mammalian target of rapamycin (AMPK–mTOR) to regulate the autophagy pathway, hence curbing inflammation.
Collapse
|
4
|
Determination of the Peptide AWRK6 in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Its Application to Pharmacokinetics. Molecules 2021; 27:molecules27010092. [PMID: 35011324 PMCID: PMC8746970 DOI: 10.3390/molecules27010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
AWRK6 was a synthesized peptide developed based on the natural occurring peptide dybowskin-2CDYa, which was discovered in frog skin in our previous study. Here, a quantitative determination method for AWRK6 analysis in rat plasma by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established and validated following U.S. FDA guidelines. A combination of plasma precipitation and liquid–liquid extraction was applied for the extraction. For pharmacokinetics study, the rats were administrated with AWRK6 via intraperitoneal and intravenous injection. The prepared plasma samples were separated on an ODS column and analyzed by tandem MS using precursor-to-product ion pairs of m/z: 533.4→84.2 for AWRK6 and m/z: 401.9→101.1 for internal standard Polymyxin B sulfate in multiple reaction monitoring mode. AWRK6 concentrations in rat plasma peaked at about 1.2 h after intraperitoneal injections at 2.35, 4.7 and 9.4 mg/kg bodyweight. The terminal half-life was around 2.8 h. The absolute bioavailability of AWRK6 was 50% after 3 doses via injection, and the apparent volume of distribution was 4.884 ± 1.736 L. The obtained determination method and pharmacokinetics profiles of AWRK6 provides a basis for further development, and forms a benchmark reference for peptide quantification.
Collapse
|
5
|
Jin L, Sun Y, Li Y, Zhang H, Yu W, Li Y, Xin Y, Alsareii SA, Wang Q, Zhang D. A synthetic peptide AWRK6 ameliorates metabolic associated fatty liver disease: involvement of lipid and glucose homeostasis. Peptides 2021; 143:170597. [PMID: 34118361 DOI: 10.1016/j.peptides.2021.170597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023]
Abstract
Metabolic associated fatty liver disease (MAFLD) is the leading common chronic liver disease affecting more than one-quarter of the population worldwide, but no pharmacological therapy was approved specifically. A synthetic peptide AWRK6 developed in our group based on the antimicrobial peptide Dybowskin-2CDYa was found to attenuated diabetes as a novel GLP-1 receptor agonist candidate. The effects of AWRK6 on MAFLD and its underlying mechanisms were investigated in this paper. In high energy diet (HED)-induced MAFLD mice, obesity and hepatic steatosis were alleviated by AWRK6 via intraperitoneal injection. The biochemistry measurements data indicated that the abnormal lipid metabolism was relieved and the glucose metabolism was improved significantly. Further, the phosphorylation of liver PI3K/AKT/AMPK/ACC was elevated significantly by AWRK6 treatment. Moreover, the effects of AWRK6 on lipid accumulation and insulin sensitivity in human cells were verified using oleic acid-induced HepG2 fatty liver cell model and insulin-induced HepG2 cells, respectively. These in vitro and in vivo results demonstrated that the peptide AWRK6 ameliorates MAFLD by improving lipid and glucose metabolism homeostasis, and it is mediated by the PI3K/AKT/AMPK/ACC signaling pathway. Thus, AWRK6 has a potential in preventing MAFLD.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Yuxin Sun
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Yuying Li
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Hanyu Zhang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Wenxue Yu
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Yiling Li
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110015, China
| | - Yi Xin
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Saeed Ali Alsareii
- Department of Surgery, Collage of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Qiuyu Wang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, And Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Song B, Zhao H, Yang H, Wang S. Efficacy of graphene oxide-loaded cationic antimicrobial peptide AWRK6 on the neutralization of endotoxin activity and in the treatment of sepsis. Aging (Albany NY) 2021; 13:19867-19877. [PMID: 34388113 PMCID: PMC8386569 DOI: 10.18632/aging.203397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Objective: This study is to assess the therapeutic effect of graphene oxide (GO) loaded with AWRK6 on endotoxin-induced sepsis. Method: AWRK6/GO was prepared by GO loaded AWRK6, with the structure characterization of AWRK6/GO conducted by atomic force microscope (AFM) and ultraviolet spectrophotometer, the sustained release rate of AWRK6/GO detected by high performance liquid chromatography (HPLC), and the neutralization ability of AWRK6/GO to lipopolysaccharide (LPS) tested by in vitro experiments. The levels of IL-8 and TNF-α in mouse cells after drug intervention were detected by ELISA; a LPS mouse model was established to observe the effects of drug intervention on the survival cycle and survival rate of mice. Results: The sustained drug release rate of AWRK6/GO reached 85% within 24 hours observed under in vitro conditions, with an efficient neutralization effect to LPS (P < 0.01); Compared with the control group, the intervention of LPS succeeded in remarkably elevating the levels of IL-8 and TNF-α in the whole blood and macrophages of the mice (P < 0.01), whose survival cycle and survival rate consequently observed an obvious decline (P < 0.01); The intervention with AWRK6 or AWRK6/GO predominantly brought down the levels of IL-8 and TNF-α in the whole blood and macrophages of mice given LPS (P < 0.01), resulting in an elevation of the survival rate and survival time (P < 0.01). Conclusion: GO loaded with cationic antimicrobial peptide AWRK6 exerts a rosy neutralization effect on endotoxin activity, with no obvious side effects on mice observed, which is of certain application value in the treatment of sepsis.
Collapse
Affiliation(s)
- Bo Song
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hongli Zhao
- Department of Senile Diseases, Dongying City Shengli Hospital, Dongying, Shandong Province, China
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shengji Wang
- Department of Emergency, Linyi People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
7
|
Yang R, Yu H, Chen J, Zhu J, Song C, Zhou L, Sun Y, Zhang Q. Limonin Attenuates LPS-Induced Hepatotoxicity by Inhibiting Pyroptosis via NLRP3/Gasdermin D Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:982-991. [PMID: 33427450 DOI: 10.1021/acs.jafc.0c06775] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipopolysaccharide (LPS)-induced liver injury is the main factor in acute liver failure. The current study aims to investigate the protection of limonin, an antioxidant compound from citrus fruit, against LPS-induced liver toxicity and elucidate the potential mechanisms. We found that limonin elevated cell viability and reduced LDH release in LPS-treated HepG2 cells. Limonin also inhibited LPS-induced pyroptosis by inhibiting membrane rupture, reducing ROS generation, and decreasing gasdermin D activation. Moreover, limonin inhibited the formation of a NOD-like receptor protein 3 (NLRP3)/Apoptosis-associated speck-like protein containing a CARD (ASC) complex by reducing the related protein expression and the colocalization cytosolic of NLRP3 and caspase-1 and then suppressed IL-1β maturation. Ultimately, we established LPS-induced hepatotoxicity in vivo by using C57BL/6 mice administrated LPS (10 mg/kg) intraperitoneally and limonin (50 and 100 mg/kg) orally. We found that limonin dereased the serum ALT and AST activity and LDH release and increased the hepatic GSH amount in LPS-treated mice. Additionally, the liver histological evaluation revealed that limonin protects against LPS-induced liver damage. We further demonstrated that limonin ameliorated LPS-induced hepatotoxicity by inhibiting pyroptosis via the NLRP3/gasdermin D signaling pathway. In summary, this study uncovered the mechanism whereby limonin mitigated LPS-induced hepatotoxicity and documented that limonin might be a promising candidate drug for LPS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hanxi Yu
- College of Overseas Education, Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
8
|
Su H, Ma Z, Guo A, Wu H, Yang X. Salvianolic acid B protects against sepsis-induced liver injury via activation of SIRT1/PGC-1α signaling. Exp Ther Med 2020; 20:2675-2683. [PMID: 32765761 PMCID: PMC7401829 DOI: 10.3892/etm.2020.9020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Liver injury occurs frequently during sepsis, which leads to high mortality and morbidity. A previous study has suggested that salvianolic acid B (SalB) is protective against sepsis-induced lung injury. However, whether SalB is able to protect against sepsis-induced liver injury remains unclear. The present study aimed to investigate the effects of SalB on sepsis-induced liver injury and its potential underlying mechanisms. Sepsis was induced in mice using a cecal ligation and puncture (CLP) method. The mice were treated with SalB (30 mg/kg intraperitoneally) at 0.5, 2 and 8 h after CLP induction. Pathological alterations of the liver were assessed using hematoxylin and eosin staining. The serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured. The hepatic mRNA levels of TNF-α, IL-6, Bax and Bcl-2 were also detected. The results suggested that treatment with SalB ameliorated sepsis-induced liver injury in the mice, as supported by the mitigated pathologic changes and lowered serum aminotransferase levels. SalB also decreased the levels of the inflammatory cytokines TNF-α and IL-6 in the serum and the liver of the CLP model mice. In addition, SalB significantly downregulated Bax expression and upregulated Bcl-2 expression, and upregulated the expression levels of SIRT1 and PGC-1α. However, when sirtuin 1 (SIRT1) small interfering RNA was co-administered with SalB, the protective effects of SalB were attenuated and the expression levels of SIRT1 and PGC-1α were reduced. In summary, these results indicate that SalB mitigates sepsis-induced liver injury via reduction of the inflammatory response and hepatic apoptosis, and the underlying mechanism may be associated with the activation of SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Hongling Su
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zhisheng Ma
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Aixia Guo
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Hong Wu
- Department of General Surgery, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiangmin Yang
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|