1
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Shukla S, Dalai P, Agrawal-Rajput R. Metabolic crosstalk: Extracellular ATP and the tumor microenvironment in cancer progression and therapy. Cell Signal 2024; 121:111281. [PMID: 38945420 DOI: 10.1016/j.cellsig.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.
Collapse
Affiliation(s)
- Sourav Shukla
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
3
|
Munef A, Lafi Z, Shalan N. Investigating anti-cancer activity of dual-loaded liposomes with thymoquinone and vitamin C. Ther Deliv 2024; 15:267-278. [PMID: 38449422 DOI: 10.4155/tde-2023-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Background: Thymoquinone (TQ) and vitamin C (Vit C) have demonstrated individual anticancer effects in various studies. TQ exhibits inhibitory properties against tumor growth, induces apoptosis, while Vit C protects against DNA damage and oxidative stress. Aim: Formulation of TQ and Vit C combination into liposomes using two methods and investigate the synergistic anticancer. Method: Liposomal preparations were characterized, and the purity of drug components was confirmed using encapsulation efficiency (EE %). Results: In vitro cell viability studies demonstrated the inhibitory effect of TQ and Vit C against colorectal (HT29, 5.5 ± 0.9 μM) and lung cancer (A549, 6.25 ± 0.9 μM) cell lines with combination index <1. Conclusion: The formulation of TQ and Vit C displayed synergistic anticancer activity.
Collapse
Affiliation(s)
- Ahmed Munef
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Naeem Shalan
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
4
|
Richert I, Berchard P, Abbes L, Novikov A, Chettab K, Vandermoeten A, Dumontet C, Karanian M, Kerzerho J, Caroff M, Blay JY, Dutour A. A TLR4 Agonist Induces Osteosarcoma Regression by Inducing an Antitumor Immune Response and Reprogramming M2 Macrophages to M1 Macrophages. Cancers (Basel) 2023; 15:4635. [PMID: 37760603 PMCID: PMC10526955 DOI: 10.3390/cancers15184635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma (OsA) has limited treatment options and stagnant 5-year survival rates. Its immune microenvironment is characterized by a predominance of tumor-associated macrophages (TAMs), whose role in OsA progression remain unclear. Nevertheless, immunotherapies aiming to modulate macrophages activation and polarization could be of interest for OsA treatment. In this study, the antitumor effect of a liposome-encapsulated chemically detoxified lipopolysaccharide (Lipo-MP-LPS) was evaluated as a therapeutic approach for OsA. Lipo-MP-LPS is a toll-like receptor 4 (TLR4) agonist sufficiently safe and soluble to be IV administered at effective doses. Lipo-MP-LPS exhibited a significant antitumor response, with tumor regression in 50% of treated animals and delayed tumor progression in the remaining 50%. The agent inhibited tumor growth by 75%, surpassing the efficacy of other immunotherapies tested in OsA. Lipo-MP-LPS modulated OsA's immune microenvironment by favoring the transition of M2 macrophages to M1 phenotype, creating a proinflammatory milieu and facilitating T-cell recruitment and antitumor immune response. Overall, the study demonstrates the potent antitumor effect of Lipo-MP-LPS as monotherapy in an OsA immunocompetent model. Reprogramming macrophages and altering the immune microenvironment likely contribute to the observed tumor control. These findings support the concept of immunomodulatory approaches for the treatment of highly resistant tumors like OsA.
Collapse
Affiliation(s)
- Iseulys Richert
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Paul Berchard
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Lhorra Abbes
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France; (K.C.); (C.D.)
- Hospices Civils de Lyon, 69007 Lyon, France
| | - Alexandra Vandermoeten
- SCAR, Rockefeller Medecine School, Université Claude Bernard Lyon 1, 69367 Lyon, France;
| | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France; (K.C.); (C.D.)
- Hospices Civils de Lyon, 69007 Lyon, France
| | - Marie Karanian
- Department of Biopathology, Léon Bérard Center, Unicancer, 69008 Lyon, France;
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Martine Caroff
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
- Department of Medicine, Léon Bérard Center, Unicancer, 69008 Lyon, France
- Department of Medical Oncology, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| |
Collapse
|
5
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Chavda VP, Balar PC, Patel SB. Interventional nanotheranostics in hepatocellular carcinoma. Nanotheranostics 2023; 7:128-141. [PMID: 36793354 PMCID: PMC9925354 DOI: 10.7150/ntno.80120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Interventional nanotheranostics is a system of drug delivery that does a dual function; along with the therapeutic action, it also does have diagnostic features. This method helps in early detection, targeted delivery, and the least chances of damage to surrounding tissue. It ensures the highest efficiency for the management of the disease. Imaging is the near future for the quickest and most accurate detection of disease. After combing both effective measures, it ensures the most meticulous drug delivery system. Nanoparticles such as Gold NPs, Carbon NPs, Silicon NPS, etc. The article emphasizes on effect of this delivery system in the treatment of Hepatocellular Carcinoma. It is one of the widely spreading diseases and theranostics is trying to make the scenario better. The review suggests the pitfall of the current system and how theranostics can help. It describes the mechanism used to generate its effect and believes that interventional nanotheranostics do have a future with rainbow color. The article also describes the current hindrance to the flourishing of this miraculous technology.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Pankti C. Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Srushti B. Patel
- Pharmacy Section, Government Pharmacy College, Gandhinagar, India
| |
Collapse
|
7
|
Millozzi F, Papait A, Bouché M, Parolini O, Palacios D. Nano-Immunomodulation: A New Strategy for Skeletal Muscle Diseases and Aging? Int J Mol Sci 2023; 24:1175. [PMID: 36674691 PMCID: PMC9862642 DOI: 10.3390/ijms24021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Andrea Papait
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| |
Collapse
|
8
|
Zhai J, Gu X, Liu Y, Hu Y, Jiang Y, Zhang Z. Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: An update review. Front Pharmacol 2023; 14:1152934. [PMID: 37153795 PMCID: PMC10160433 DOI: 10.3389/fphar.2023.1152934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
As traditional strategies for cancer treatment, some chemotherapy agents, such as doxorubicin, oxaliplatin, cyclophosphamide, bortezomib, and paclitaxel exert their anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells. ICD induces anti-tumor immunity through release of, or exposure to, damage-related molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), calreticulin, adenosine triphosphate, and heat shock proteins. This leads to activation of tumor-specific immune responses, which can act in combination with the direct killing functions of chemotherapy drugs on cancer cells to further improve their curative effects. In this review, we highlight the molecular mechanisms underlying ICD, including those of several chemotherapeutic drugs in inducing DAMPs exposed during ICD to activate the immune system, as well as discussing the prospects for application and potential role of ICD in cancer immunotherapy, with the aim of providing valuable inspiration for future development of chemoimmunotherapy.
Collapse
|
9
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
10
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Zhu C, Fang Z, Peng L, Gao F, Peng W, Song F. Curcumin Suppresses the Progression of Colorectal Cancer by Improving Immunogenic Cell Death Caused by Irinotecan. Chemotherapy 2022; 67:211-222. [DOI: 10.1159/000518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/27/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Irinotecan (IRI) is a common chemotherapeutic drug for colorectal cancer; however, the mechanism underlying its immunomodulatory effect remains unclear. Curcumin (CUR), an adjuvant drug with anti-inflammatory and antitumor effects, has been studied extensively, although its synergistic antitumor effect remains unclear. <b><i>Methods:</i></b> The effects of CUR and IRI on oxidative stress and their antitumor effects were detected by flow cytometry. Endoplasmic reticulum stress-related proteins including CHOP and BiP, and immunogenic cell death (ICD) proteins including calreticulin (CALR) and high mobility group box 1 (HMGB1), were detected by Western blotting. IFN-γ and TNF-α levels in the serum of mice were detected by ELISA. <b><i>Results:</i></b> IRI in combination with CUR had synergistic antitumor effects in CT-26 colon carcinoma cells. Combination treatment with IRI and CUR was more effective than IRI or CUR alone. IRI and CUR combination treatment significantly upregulated ICD-related proteins including CALR and HMGB1 and had a greater antitumor effect than IRI or CUR single treatment in vivo. CUR may synergistically improve the antitumor effect of IRI by promoting the ICD effect. <b><i>Conclusion:</i></b> Combination therapy with IRI and CUR may be an option for first-line chemotherapy in some patients with advanced colorectal cancer.
Collapse
|
12
|
Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Int J Mol Sci 2022; 23:ijms23084249. [PMID: 35457065 PMCID: PMC9030431 DOI: 10.3390/ijms23084249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The drugs used for cancer treatment have many drawbacks, as they damage both tumor and healthy cells and, in addition, they tend to be poorly soluble drugs. Their transport in nanoparticles can solve these problems as these can release the drug into tumor tissues, as well as improve their solubility, bioavailability, and efficacy, reducing their adverse effects. This article focuses on the advantages that nanotechnology can bring to medicine, with special emphasis on nanoliposomes. For this, a review has been made of the nanoliposomal systems marketed for the treatment of cancer, as well as those that are in the research phase, highlighting the clinical trials being carried out. All marketed liposomes studied are intravenously administered, showing a reduced intensity of side-effects compared with the nonliposomal form. Doxorubicin is the active ingredient most frequently employed. Ongoing clinical trials expand the availability of liposomal medicines with new clinical indications. In conclusion, the introduction of drugs in nanoliposomes means an improvement in their efficacy and the quality of life of patients. The future focus of research could be directed to develop multifunctional targeted nanoliposomes using new anticancer drugs, different types of existing drugs, or new standardized methodologies easily translated into industrial scale.
Collapse
|
13
|
Hsu FT, Tsai CL, Chiang IT, Lan KH, Yueh PF, Liang WY, Lin CS, Chao Y, Lan KL. Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma. J Cell Mol Med 2022; 26:1955-1968. [PMID: 35174623 PMCID: PMC8980892 DOI: 10.1111/jcmm.17220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nab‐paclitaxel (Abraxane), which is a nanoparticle form of albumin‐bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15‐ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15‐ABD best suppressed tumour growth and produced a 40%–60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon‐γ (IFN‐γ)‐secreting CD8+ T cells and CD11b+CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+IFN‐γ+ T cells and a 0.47% reduction in CD4+CD25+FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+GR‐1+ myeloid‐derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15‐ABD effectively suppressed NF‐κB‐mediated immune suppressive markers, including indoleamine 2,3‐dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15‐ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Tsang Chiang
- Medical administrative center, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Keng-Hsueh Lan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Shuo Lin
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. NANOSCALE 2021; 13:17218-17235. [PMID: 34643196 DOI: 10.1039/d1nr05512g] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy has been a conventional paradigm for cancer treatment, and multifarious chemotherapeutic drugs have been widely employed for decades with significant performances in suppressing tumors. Moreover, some of the antitumor chemotherapeutic agents, such as doxorubicin (DOX), oxaliplatin (OXA), cyclophosphamide (CPA) and paclitaxel (PTX), can also tackle tumors through the induction of immunogenic cell death (ICD) in tumor cells to trigger specific antitumor immune responses of the body and improve chemotherapy efficacy. In recent years, chemo-immunotherapy has attracted increasing attention as one of the most promising combination therapies to struggle with malignant tumors. Many effective antitumor therapies have benefited from the successful induction of ICD in tumors, which could incur the release of endogenous danger signals and tumor-associated antigens (TAAs), further stimulating antigen-presenting cells (APCs) and ultimately initiating efficient antitumor immunity. In this review, several well-characterized damage-associated molecular patterns (DAMPs) were introduced and the progress of ICD induced by representative chemotherapeutic drugs for nanomedicine-based chemo-immunotherapy was highlighted. In addition, the combination strategies involving ICD cooperated with other therapies were discussed. Finally, we shared some perspectives in chemotherapeutic drug-induced ICD for future chemo-immunotherapy. It was hoped that this review would provide worthwhile presentations and enlightenments for cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Mogen Zhang
- College of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
15
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
16
|
Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Hoogevest
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg 69120D‐69120 Germany
| | - Harry Tiemessen
- Technical & Research Development PHAD PDU Specialty Novartis Campus Physical Garden (WSJ 177) 2.14 Basel CH‐4002 Switzerland
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Aachen D‐52074 Germany
- Institute for Biomedical Engineering, Faculty of Medicine RWTH Aachen University Aachen D‐52074 Germany
| | - Simon Drescher
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg D‐69120 Germany
| | - Alfred Fahr
- Professor Emeritus, Pharmaceutical Technology Friedrich‐Schiller‐University Jena Jena Germany
| |
Collapse
|
17
|
Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021; 9:629635. [PMID: 33708759 PMCID: PMC7940769 DOI: 10.3389/fchem.2021.629635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.
Collapse
Affiliation(s)
- Ajita Jindal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sounik Sarkar
- Flowcytometry Facility, Modern Biology Department, University of Calcutta, Kolkata, India
| | - Aftab Alam
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- Charles River Laboratories, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
18
|
Dias LM, Sharifi F, de Keijzer MJ, Mesquita B, Desclos E, Kochan JA, de Klerk DJ, Ernst D, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Cavaco JEB, Tedesco AC, Huang X, Pan W, Ding B, Krawczyk PM, Heger M. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112146. [PMID: 33601256 DOI: 10.1016/j.jphotobiol.2021.112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Mark J de Keijzer
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel J de Klerk
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Daniël Ernst
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Lianne R de Haan
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Albert C van Wijk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - José E B Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Xuan Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
19
|
Jiang M, Li W, Zhu C, Li X, Zhang J, Luo Z, Qin B, Du Y, Luo L, You J. Perdurable PD-1 blockage awakes anti-tumor immunity suppressed by precise chemotherapy. J Control Release 2021; 329:1023-1036. [DOI: 10.1016/j.jconrel.2020.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
|
20
|
Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel AE. Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS NANO 2020; 14:13343-13366. [PMID: 32940463 PMCID: PMC8023019 DOI: 10.1021/acsnano.0c05194] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We developed a custom-designed liposome carrier for codelivery of a potent immunogenic cell death (ICD) stimulus plus an inhibitor of the indoleamine 2,3-dioxygenase (IDO-1) pathway to establish a chemo-immunotherapy approach for solid tumors in syngeneic mice. The carrier was constructed by remote import of the anthraquinone chemotherapeutic agent, mitoxantrone (MTO), into the liposomes, which were further endowed with a cholesterol-conjugated indoximod (IND) prodrug in the lipid bilayer. For proof-of-principle testing, we used IV injection of the MTO/IND liposome in a CT26 colon cancer model to demonstrate the generation of a robust immune response, characterized by the appearance of ICD markers (CRT and HMGB-1) as well as evidence of cytotoxic cancer cell death, mediated by perforin and granzyme B. Noteworthy, the cytotoxic effects involved natural killer (NK) cell, which suggests a different type of ICD response. The immunotherapy response was significantly augmented by codelivery of the IND prodrug, which induced additional CRT expression, reduced number of Foxp3+ Treg, and increased perforin release, in addition to extending animal survival beyond the effect of an MTO-only liposome. The outcome reflects the improved pharmacokinetics of MTO delivery to the cancer site by the carrier. In light of the success in the CT26 model, we also assessed the platform efficacy in further breast cancer (EMT6 and 4T1) and renal cancer (RENCA) models, which overexpress IDO-1. Encapsulated MTO delivery was highly effective for inducing chemo-immunotherapy responses, with NK participation, in all tumor models. Moreover, the growth inhibitory effect of MTO was enhanced by IND codelivery in EMT6 and 4T1 tumors. All considered, our data support the use of encapsulated MTO delivery for chemo-immunotherapy, with the possibility to boost the immune response by codelivery of an IDO-1 pathway inhibitor.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle Chiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Mercedeh Khazaieli
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Qi Liu
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiao Zhang
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Ying Ji
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Brenda Melano
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, California, 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
21
|
Valissery P, Thapa R, Singh J, Gaur D, Bhattacharya J, Singh AP, Dhar SK. Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Adv 2020; 10:36201-36211. [PMID: 35517081 PMCID: PMC9057047 DOI: 10.1039/d0ra05597b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively. Both nanoformulations exhibit in vitro parasite killing activity against Plasmodium falciparum with the ART-LIPO performing at comparable efficacy to the control drug solubilized in ethanol. These water-soluble formulations showed potent in vivo antimalarial activity as well in the mouse model of malaria at equivalent doses of the parent drug. Additionally, the artemisinin-PCL nanoformulation used in combination with either pyrimethamine or chloroquine increased the survival of the Plasmodium berghei infected mice for more than 34 days and effectively cured the mice of the infection. We highlight the potential for polymer and liposome-based nanocarriers in improving not only the aqueous phase solubility of artemisinin but also concomitantly retaining its therapeutic efficacy in vivo as well.
Collapse
Affiliation(s)
- Praveesh Valissery
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Roshni Thapa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Jyoti Singh
- National Institute of Immunology New Delhi 110067 India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University New Delhi 110067 India
| | | | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
22
|
Bi Z, Chen P, Liu YB, Zhao T, Sun X, Song XR, Wang YS. Efficacy and safety analysis of paclitaxel, docetaxel and liposomal paclitaxel after neoadjuvant therapy in breast cancer. Breast Cancer Res Treat 2020; 184:397-405. [PMID: 32776291 DOI: 10.1007/s10549-020-05851-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Paclitaxel-based regimens are widely used in the neoadjuvant therapy (NAT) of breast cancer. The purpose is to analysis the efficacy and adverse events (AEs) among common paclitaxel (PTX), docetaxel and liposomal paclitaxel. At the same time, we want to analysis the axillary nodal pathologic complete response (apCR) after NAT among the three groups. METHODS From April 2014 to 2020, 647 breast cancer patients underwent operation after NAT were included in this study. Patients received full course of anthracycline- and paclitaxel-based chemotherapy before surgery. The paclitaxel-based regimens included PTX, docetaxel and liposomal paclitaxel. The therapy efficacy and AEs of the three groups were evaluated. At the same time, the apCR was also analyzed. RESULTS In general, 30.6% (198/647) of patients achieved breast pathologic complete response (bpCR), which was 28.6%, 28.3% and 39.3% among PTX, docetaxel and liposomal paclitaxel group, respectively (p = 0.067). The total pathologic complete response (tpCR) (achieving both bpCR and apCR) was 21.6% (140/647). The tpCR was 13.3%, 19.4% and 34.4% among PTX, docetaxel and liposomal paclitaxel group, respectively (p = 0.026). The multivariate logistic analysis result showed that clinical tumor stage and molecular subtype were significantly associated with tpCR (all p < 0.05). Among 592 clinical positive patients (cN+), the apCR was 39.0% (231/592). The multivariate logistic analysis showed that paclitaxel- based regimens and molecular subtype were indicated as independent predictors for apCR of NAT. The apCR was significantly higher in liposomal paclitaxel group (63.5%) than in PTX (24.6%) and docetaxel group (34.8%) (p < 0.001). The subgroup analysis among different molecular subtypes found that in triple negative (TN) and HER-2 positive (HER2+) subgroup, the apCR in liposomal paclitaxel group was significantly higher than those in PTX and docetaxel group (all p < 0.05). But no significant result was found in the subgroup analysis in hormone receptor positive/HER-2 negative subgroup (p = 0.050). Safety analysis indicated that the incidence of neutropenia (grade III-IV) and peripheral neurotoxicity (grade I-II) was significantly lower in the liposomal paclitaxel group than in the PTX and docetaxel group. The incidence of oral mucositis, anaphylaxis and palmar-plantar erythrodysesthesia syndrome was also much lower in liposomal paclitaxel than other two groups (all p < 0.05). And there was no significant difference in other AEs among the three groups (all p > 0.05). CONCLUSION Liposome paclitaxel had similar tumor suppressor effect compared with PTX and docetaxel in NAT setting. Moreover, it had a better axillary lymph node (ALN) response after NAT than PTX and docetaxel. These patients who received liposome paclitaxel had more chance to avoid ALN dissection after NAT. At the same time, the application of liposome enables liposome paclitaxel could significantly reduce AEs caused by chemotherapy. Therefore, we suggested the application of liposome paclitaxel in the NAT setting, especially for cN+ patients with TN and HER2 + disease.
Collapse
Affiliation(s)
- Zhao Bi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Peng Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Yan-Bing Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Tong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xian-Rang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.
| | - Yong-Sheng Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
24
|
Nery de Albuquerque Rego G, da Hora Alves A, Penteado Nucci M, Bustamante Mamani J, Anselmo de Oliveira F, Gamarra LF. Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations. Int J Mol Sci 2020; 21:ijms21124490. [PMID: 32599834 PMCID: PMC7349965 DOI: 10.3390/ijms21124490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanoformulations and their physical and chemical characteristics; the therapeutic anti-angiogenic process; and methods for assessing the effects on antiangiogenic markers caused by therapies. The articles included in the review were heterogeneous and varied in practically all aspects related to nanoformulations and models. However, there was slight variance in the antiangiogenic effect analysis. CD31 was extensively used as a marker, which does not provide a view of the effects on the most diverse aspects involved in angiogenesis. Therefore, the present review highlighted the need for standardization between the different approaches of antiangiogenic therapy for the GBM model that allows a more effective meta-analysis and that helps in future translational studies.
Collapse
Affiliation(s)
| | - Arielly da Hora Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | - Mariana Penteado Nucci
- LIM44-Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Javier Bustamante Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | | | - Lionel Fernel Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
25
|
Condello M, Mancini G, Meschini S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front Pharmacol 2020; 11:787. [PMID: 32547395 PMCID: PMC7272661 DOI: 10.3389/fphar.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they have low toxicity and immunogenicity and they are biodegradable and versatile. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Giovanna Mancini
- Institute for Biological Systems, National Research Council, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
26
|
Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator. J Control Release 2020; 324:574-585. [PMID: 32473178 DOI: 10.1016/j.jconrel.2020.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Bioinformatically triple negative breast cancer (TNBC) and colon adenocarcinoma (COAD), two typical "cold" cancers, were found overexpressed PD-L1 and CD47 respectively but neither of them showed satisfied response on its corresponding immune checkpoint blockade (ICB) in clinic. The initial immunotherapeutic resistance to ICB was essentially attributed to the so-called "cold" tumor immune milieu (TIM). To overcome tumor immunological tolerance against ICBs, here we report a versatile nano-modulator for point-to-point counteracting the immune-suppressors meanwhile boosting tumor T cell infiltration. Small interfering RNA targeting indoleamine 2,3-dioxygenase-1 was first co-delivered with gemcitabine using our lab-made biocompatible nanocages for relieving the immune brakes related to regulatory T cells and myeloid-derived suppressor cells. O2-producible mineralization was then tattooed on the surface of the nanocarriers to alleviate the immune inhibition of M2 macrophages. Followed with the decoration of therapeutic ICB antibodies on the mineralized shell, a versatile nano-modulator was constructed. TNBC and COAD were employed to evaluate the tumoricidal efficacy of the nano-modulator that decorated with aPD-L1 and aCD47, respectively. Our nano-modulator demonstrated multipotencies in eliciting a "hot" TIM and greatly potentiated ICB treatment for these "cold" malignancies. The strung expansibility of the nano-modulator may be also conducive in addressing the failure of more other ICBs on the non-responsive subpopulation of patients despite the corresponding immune checkpoint highly expressed in tumors.
Collapse
|
27
|
Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 2020; 16:1205-1226. [PMID: 31530041 DOI: 10.1080/17425247.2019.1669558] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Liposomes and lipid-based nanoparticles (LNPs) effectively deliver cargo molecules to specific tissues, cells, and cellular compartments. Patients benefit from these nanoparticle formulations by altered pharmacokinetic properties, higher efficacy, or reduced side effects. While liposomes are an established delivery option for small molecules, Onpattro® (Sanofi Genzyme, Cambridge, MA) is the first commercially available LNP formulation of a small interfering ribonucleic acid (siRNA). Areas covered: This review article summarizes key features of liposomal formulations for small molecule drugs and LNP formulations for RNA therapeutics. We describe liposomal formulations that are commercially available or in late-stage clinical development and the most promising LNP formulations for ASOs, siRNAs, saRNA, and mRNA therapeutics. Expert opinion: Similar to liposomes, LNPs for RNA therapeutics have matured but still possess a niche application status. RNA therapeutics, however, bear an immense hope for difficult to treat diseases and fuel the imagination for further applications of RNA drugs. LNPs face similar challenges as liposomes including limitations in biodistribution, the risk to provoke immune responses, and other toxicities. However, since properties of RNA molecules within the same group are very similar, the entire class of therapeutic molecules would benefit from improvements in a few key parameters of the delivery technology.
Collapse
Affiliation(s)
- Ludger M Ickenstein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| |
Collapse
|
28
|
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 2020; 20:110. [PMID: 32280302 PMCID: PMC7137337 DOI: 10.1186/s12935-020-01195-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) and its main metabolite adenosine (ADO) constitute an intrinsic part of immunological network in tumor immunity. The concentrations of eATP and ADO in tumor microenvironment (TME) are controlled by ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed on immune cells, endothelial cells and cancer cells. Once accumulated in TME, eATP boosts antitumor immune responses, while ADO attenuates immunity against tumors. eATP and ADO, like yin and yang, represent two opposite aspects from immune-activating to immune-suppressive signals. Here we reviewed the functions of eATP and ADO in tumor immunity and attempt to block eATP hydrolysis, ADO formation and their contradictory effects in tumor models, allowing the induction of effective anti-tumor immune responses in TME. These attempts documented that therapeutic approaches targeting eATP/ADO metabolism and function may be effective methods in cancer therapy.
Collapse
Affiliation(s)
- Li-Li Feng
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yi-Qing Cai
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Ming-Chen Zhu
- 5Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Li-Jie Xing
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Xin Wang
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China.,2School of Medicine, Shandong University, Jinan, 250012 Shandong China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China.,National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
29
|
Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS NANO 2019; 13:12511-12524. [PMID: 31664821 DOI: 10.1021/acsnano.9b02875] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microsatellite-stable colorectal cancer (CRC) is known to be resistant to immunotherapy. The combination of quercetin (Q) and alantolactone (A) was found to induce synergistic immunogenic cell death (ICD) at a molar ratio of 1:4 (Q:A). To achieve ratiometric loading and delivery, the micellar delivery of Q and A (QA-M) was developed with high entrapment efficiency and drug loading at an optimal ratio. QA-M achieved prolonged blood circulation and increased tumor accumulation for both drugs. More importantly, QA-M retained the desired drug ratio (molar ratio of Q to A = 1:4) in tumors at 2 and 4 h after intravenous injection for synergistic immunotherapy. Tumor growth was significantly inhibited in murine orthotopic CRC by the treatment of QA-M compared to PBS and the combination of free drugs (p < 0.005). The combination of nanotherapy stimulated the host immune response to induce long-term tumor destruction and induced memory tumor surveillance with a 1.3-fold increase in survival median time compared to PBS (p < 0.0001) and a combination of free drugs (p < 0.0005). The synergistic therapeutic effect induced by codelivery of Q and A is capable of reactivating antitumor immunity by inducing ICD, causing cell toxicity and modulating the immune-suppressive tumor microenvironment. Such a combination of Q and A with synergistic effects entrapped in a simple and safe nanodelivery system may provide the potential for scale-up manufacturing and clinical applications as immunotherapeutic agents for CRC.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin Province 130022 , China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
30
|
Kamoun WS, Dugast AS, Suchy JJ, Grabow S, Fulton RB, Sampson JF, Luus L, Santiago M, Koshkaryev A, Sun G, Askoxylakis V, Tam E, Huang ZR, Drummond DC, Sawyer AJ. Synergy between EphA2-ILs-DTXp, a Novel EphA2-Targeted Nanoliposomal Taxane, and PD-1 Inhibitors in Preclinical Tumor Models. Mol Cancer Ther 2019; 19:270-281. [DOI: 10.1158/1535-7163.mct-19-0414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
|
31
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|