1
|
Roestel JA, Wiersema JH, Jansen RK, Borsch T, Gruenstaeudl M. On the importance of sequence alignment inspections in plastid phylogenomics - an example from revisiting the relationships of the water-lilies. Cladistics 2024; 40:469-495. [PMID: 38761095 DOI: 10.1111/cla.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024] Open
Abstract
The water-lily clade represents the second earliest-diverging branch of angiosperms. Most of its species belong to Nymphaeaceae, of which the "core Nymphaeaceae"-comprising the genera Euryale, Nymphaea and Victoria-is the most diverse clade. Despite previous molecular phylogenetic studies on the core Nymphaeaceae, various aspects of their evolutionary relationships have remained unresolved. The length-variable introns and intergenic spacers are known to contain most of the sequence variability within the water-lily plastomes. Despite the challenges with multiple sequence alignment, any new molecular phylogenetic investigation on the core Nymphaeaceae should focus on these noncoding plastome regions. For example, a new plastid phylogenomic study on the core Nymphaeaceae should generate DNA sequence alignments of all plastid introns and intergenic spacers based on the principle of conserved sequence motifs. In this investigation, we revisit the phylogenetic history of the core Nymphaeaceae by employing such an approach. Specifically, we use a plastid phylogenomic analysis strategy in which all coding and noncoding partitions are separated and then undergo software-driven DNA sequence alignment, followed by a motif-based alignment inspection and adjustment. This approach allows us to increase the reliability of the character base compared to the default practice of aligning complete plastomes through software algorithms alone. Our approach produces significantly different phylogenetic tree reconstructions for several of the plastome regions under study. The results of these reconstructions underscore that Nymphaea is paraphyletic in its current circumscription, that each of the five subgenera of Nymphaea is monophyletic, and that the subgenus Nymphaea is sister to all other subgenera of Nymphaea. Our results also clarify many evolutionary relationships within the Nymphaea subgenera Brachyceras, Hydrocallis and Nymphaea. In closing, we discuss whether the phylogenetic reconstructions obtained through our motif-based alignment adjustments are in line with morphological evidence on water-lily evolution.
Collapse
Affiliation(s)
- Jessica A Roestel
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| | - John H Wiersema
- Department of Botany, National Museum of Natural History - Smithsonian Institution, Washington, DC, 37012, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas Borsch
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, 14195, Berlin, Germany
| | - Michael Gruenstaeudl
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| |
Collapse
|
2
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
3
|
Nzei JM, Martínez-Médez N, Mwanzia VM, Kurauka JK, Wang QF, Li ZZ, Chen JM. Climatic niche evolution and niche conservatism of Nymphaea species in Africa, South America, and Australia. BMC PLANT BIOLOGY 2024; 24:476. [PMID: 38816799 PMCID: PMC11137912 DOI: 10.1186/s12870-024-05141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Interest in the evolution of climatic niches, particularly in understanding the potential adaptive responses of species under climate change, has increased both theoretically and within macroecological studies. These studies have provided valuable insights into how climatic traits of species influence their niche evolution. In this study, we aim to investigate whether niche conservatism plays a role in the species diversification of Nymphaea, a group of aquatic plants with a cosmopolitan distribution that is facing severe habitat loss. We will use climatic models and phylogenetic data for 23 species to reconstruct Nymphaea's niche evolution, measure niche overlap, and assess disparity through time while testing for evolutionary models. RESULTS There was a lot of overlap in niches both within and between groups, especially for species that can be found in many places. The breadth and peaks of the niche profile varied depending on the bioclimatic variables, which suggested that the species evolved differently to cope with changes in climate. The analysis also showed that evolutionary changes happened across the phylogeny, with weak to moderate signals. The morphological disparity index (MDI) values indicated that there were disparities within subclades over time but not between or among them. Niche reconstruction and evolution analysis revealed both convergent and divergent evolution among various variables. For example, N. immutabilis, N. atrans, N. violancea, and N. nouchali evolved towards intermediate temperatures for bio2 and bio3 (isothermity) while moving towards extreme temperatures for bio8 and bio9 (wettest and driest average quarterly temperatures). CONCLUSION Our study will improve our understanding of how changes in climatic niches are potentially driving the evolution of Nymphaea. It has significant scientific implications for the limits, assemblages, evolution, and diversification of species. This information is crucial for the ongoing efforts of conservation and management, particularly considering the inevitable effects of climate change.
Collapse
Affiliation(s)
- John M Nzei
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Norberto Martínez-Médez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Virginia M Mwanzia
- School of Agriculture Technical Studies and Natural Sciences, Lukenya University, P.O Box 90-90128, Mtito Andei, Kenya
| | - Joseph K Kurauka
- School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Qing-Feng Wang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
4
|
Romanov MS, Bobrov AVFC, Iovlev PS, Roslov MS, Zdravchev NS, Sorokin AN, Romanova ES, Kandidov MV. Fruit and seed structure in the ANA-grade angiosperms: Ancestral traits and specializations. AMERICAN JOURNAL OF BOTANY 2024; 111:e16264. [PMID: 38031509 DOI: 10.1002/ajb2.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
PREMISE The representatives of the ANA-grade angiosperms demonstrate a diverse pattern of morphological characters, but their apocarpous gynoecium (except in Nymphaeaceae), composed of at least partly ascidiate carpels, the four-nucleate and four-celled female gametophyte, and the diploid endosperm (except in Amborella) are inferred to be plesiomorphies. Since the structure of fruits in Austrobaileyales is under-investigated, this research aims to fill this gap in these data, describing the carpological characters of ANA-grade taxa, and potentially illuminating the ancestral fruit and seed types of angiosperms. METHODS The pericarp and seed coat anatomy was studied with light microscopy. The character optimization was carried out using WinClada software. RESULTS The fruits of Austrobaileya, Trimenia, Kadsura, and Schisandra are determined to be apocarpous berries of the Schisandra type, with a parenchymatous pericarp and mesotestal (Austrobaileya) or exomesotestal seeds (other genera). Most inferred scenarios of fruit evolution indicate that the apocarpous berry is either the most probable plesiomorphic fruit type of all angiosperms, or that of all angiosperms except Amborellaceae. This inference suggests the early origin of the berry in fruit evolution. The plesiomorphic seed type of angiosperms according to reconstructed scenarios of seed type evolution was either a seed lacking a sclerenchymatous layer or an exotestal seed. CONCLUSIONS The current research indicates that an apocarpous berry, and not a follicle, is a probable plesiomorphic character of the ANA-grade taxa and of angiosperms as a whole.
Collapse
Affiliation(s)
- Mikhail S Romanov
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey V F Ch Bobrov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Peter S Iovlev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Maxim S Roslov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Nikita S Zdravchev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey N Sorokin
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Ekaterina S Romanova
- Botanical Garden, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Maxim V Kandidov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
5
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
6
|
Comprehensive Comparative Analysis and Development of Molecular Markers for Dianthus Species Based on Complete Chloroplast Genome Sequences. Int J Mol Sci 2022; 23:ijms232012567. [PMID: 36293423 PMCID: PMC9604191 DOI: 10.3390/ijms232012567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars (‘HY’ and ‘WC’). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 ‘87M’ (the hybrid offspring F1 from D. chinensis and ‘HY’). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.
Collapse
|
7
|
Mantiquilla JA, Lu HY, Shih HC, Ju LP, Shiao MS, Chiang YC. Structured Populations of Critically Endangered Yellow Water Lily ( Nuphar shimadai Hayata, Nymphaeaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2433. [PMID: 36145834 PMCID: PMC9505410 DOI: 10.3390/plants11182433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Yellow water lily (Nuphar shimadai Hayata) is a critically endangered species in Taiwan. Here, we examined genetic structures of four extant populations, WP, GPa, GPb and GPn, using 39 simple sequence repeat (SSR) markers. Positive genetic correlation was observed within 50 m, beyond which no correlation was detected due to isolation by distance according to Mantel correlogram. This suggests a significant genetic structuring of the species. Besides, multilocus genotype (MLG) analysis revealed that GPa was a panmictic population and the species' putative center of origin. Genetic exchange was observed between GPa and GPb populations, which likely resulted from their geographic proximity. Nevertheless, there was a strong asymmetric migration detected from GPa to WP, but a recent genetic barrier prevented dispersal further northward (WP). Geneland estimated the best number of clusters as K = 2, where WP distinctly separated from the rest of the populations. In STRUCTURE output of K = 3, a third cluster was abundant only in WP. We suggest to consider GPn and WP as separate conservation units, being far from GPa. There is indeed a need to investigate these populations; as predicted, Ne = 1.6 to 3.0 is considered low and that may put the species at risk of extinction.
Collapse
Affiliation(s)
- Junaldo A. Mantiquilla
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung City 80424, Taiwan
- Department of Biological Sciences and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Mintal, Davao City 8022, Philippines
| | - Hsueh-Yu Lu
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung City 80424, Taiwan
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - Li-Ping Ju
- Fushan Research Center, Taiwan Forestry Research Institute, Yilan County 264013, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung City 80424, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Smith LT, Magdalena C, Przelomska NAS, Pérez-Escobar OA, Melgar-Gómez DG, Beck S, Negrão R, Mian S, Leitch IJ, Dodsworth S, Maurin O, Ribero-Guardia G, Salazar CD, Gutierrez-Sibauty G, Antonelli A, Monro AK. Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. FRONTIERS IN PLANT SCIENCE 2022; 13:883151. [PMID: 35860537 PMCID: PMC9289450 DOI: 10.3389/fpls.2022.883151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.
Collapse
Affiliation(s)
- Lucy T. Smith
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Natalia A. S. Przelomska
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | | | - Darío G. Melgar-Gómez
- Herbario German Coimbra Sanz, Jardín Botánico Municipal de Santa Cruz de la Sierra, Santa Cruz de la Sierra, Bolivia
| | - Stephan Beck
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Raquel Negrão
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Sahr Mian
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | | | | | - Gloria Gutierrez-Sibauty
- Herbario German Coimbra Sanz, Jardín Botánico Municipal de Santa Cruz de la Sierra, Santa Cruz de la Sierra, Bolivia
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
9
|
Guzmán-Díaz S, Núñez FAA, Veltjen E, Asselman P, Larridon I, Samain MS. Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030448. [PMID: 35161429 PMCID: PMC8838774 DOI: 10.3390/plants11030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
Collapse
Affiliation(s)
- Salvador Guzmán-Díaz
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Correspondence:
| | - Fabián Augusto Aldaba Núñez
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
| | - Emily Veltjen
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Ghent University Botanical Garden, Ghent University, 9000 Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| | - Isabel Larridon
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| |
Collapse
|
10
|
Wang L, Yu X, Xu W, Zhang J, Lin H, Zhao Y. Complete chloroplast genome sequencing support Angelica decursiva is an independent species from Peucedanum praeruptorum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2503-2515. [PMID: 34924707 PMCID: PMC8639966 DOI: 10.1007/s12298-021-01097-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/11/2023]
Abstract
UNLABELLED Peucedani Radix is the dry root of Peucedanum praeruptorum of the umbelliferous family, but the dry root of Angelica decursiva was also the source of Peucedani Radix in the past. As one of the most popular traditional Chinese medicinal herbs, the certified source of Peucedani Radix is still disputed. To better understand the relationship between A. decursiva and P. praeruptorum, we sequenced their chloroplast (cp) genomes. The gene structure, codon usage bias, repeat, simple sequence repeat (SSR), as well as their borders of inverted repeat (IR) regions of the two cp genomes are analyzed to identify potential genetic markers. Great variation is exhibited in the repeat sequences of IR, large single copy regions and the SSRs of the two cp genomes, which can be used as molecular markers to distinguish them. The phylogenetic analysis also indicates that they belong to two different genera in Apiaceae family: A. decursiva is an Angelica plant and P. praeruptorum is a Peucedanum plant. Our observations suggest that the two species are somewhere different in gene features, which contributes to support A. decursiva as an independent species from P. praeruptorum. The results also provide new evidence that A. decursiva should not be regarded as the certified source of Peucedani Radix in taxonomy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01097-w.
Collapse
Affiliation(s)
- Long Wang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Xiangxu Yu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Wenbo Xu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Junqing Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Hanfeng Lin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
11
|
El ES, Remizowa MV, Sokoloff DD. Developmental Flower and Rhizome Morphology in Nuphar (Nymphaeales): An Interplay of Chaos and Stability. Front Cell Dev Biol 2020; 8:303. [PMID: 32509775 PMCID: PMC7248231 DOI: 10.3389/fcell.2020.00303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
European species of Nuphar are amongthe most accessible members of the basal angiosperm grade, but detailed studies using scanning electron microscopy are lacking. We provide such data and discuss them in the evolutionary context. Dorsiventral monopodial rhizomes of Nuphar bear foliage leaves and non-axillary reproductive units (RUs) arranged in a Fibonacci spiral. The direction of the phyllotaxis spiral is established in seedlings apparently environmentally and maintained through all rhizome branching events. The RUs can be located on dorsal, ventral or lateral side of the rhizome. There is no seasonality in timing of their initiation. The RUs usually form pairs in positions N and N + 2 along the ontogenetic spiral. New rhizomes appear on lateral sides of the mother rhizome. A lateral rhizome is subtended by a foliage leaf (N) and is accompanied by a RU in the position N + 2. We hypothesize a two-step process of regulation of RU/branch initiation, with the second step possibly involving environmental factors such as gravitropism. Each RU has a short stalk, 1-2 scale-like phyllomes and a long-pedicellate flower. We support a theory that the flower is lateral to the RU axis. The five sepals initiate successively and form two whorls as 3 + 2. The sepal arrangement is not 'intermediate' between whorled and spiral. Mechanisms of phyllotaxis establishment differ between flowers and lateral rhizomes. Petal, stamen and carpel numbers are not precisely fixed. Petals are smaller than sepals and form a whorl. They appear first in the sectors of the outer whorl sepals. The stamen arrangement is whorled to chaotic. The merism of the androecium tends to be the same as in the corolla. Flowers with odd numbers of stamen orthostichies are found. These are interpreted as having a non-integer merism of the androecium (e.g., 14.5). Carpels form a whorl in N. lutea and normally alternate with inner whorl stamens. Sterile second whorl carpel(s) are found in some flowers of N. pumila.
Collapse
Affiliation(s)
- Elena S. El
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Margarita V. Remizowa
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitry D. Sokoloff
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Ge Y, Dong X, Wu B, Wang N, Chen D, Chen H, Zou M, Xu Z, Tan L, Zhan R. Evolutionary analysis of six chloroplast genomes from three Persea americana ecological races: Insights into sequence divergences and phylogenetic relationships. PLoS One 2019; 14:e0221827. [PMID: 31532782 PMCID: PMC6750585 DOI: 10.1371/journal.pone.0221827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022] Open
Abstract
Chloroplasts significantly influence species phylogenies because of their maternal inheritance and the moderate evolutionary rate of their genomes. Avocado, which is a member of the family Lauraceae, has received considerable attention from botanists, likely because of its position as a basal angiosperm. However, there is relatively little avocado genomic information currently available. In this study, six complete avocado chloroplast genomes from three ecological races were assembled to examine the sequence diversity among the three avocado ecological races. A comparative genomic analysis revealed that 515 simple sequence repeat loci and 176 repeats belonging to four other types were polymorphic across the six chloroplast genomes. Three highly variable regions (trnC-GCA-petN, petN-psbM, and petA-psbJ) were identified as highly informative markers. A phylogenetic analysis based on 79 common protein-coding genes indicated that the six examined avocado accessions from three ecological races form a monophyletic clade. The other three genera belonging to the Persea group clustered to form a sister clade with a high bootstrap value. These chloroplast genomes provide important genetic information for future attempts at identifying avocado races and for the related biological research.
Collapse
Affiliation(s)
- Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiangshu Dong
- College of Agriculture, Yunnan University, Yunnan, China
| | - Bin Wu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Nan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Di Chen
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haihong Chen
- College of Agriculture, Guangxi Vocational and Technical College, Nanning, China
| | - Minghong Zou
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zining Xu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|