1
|
Zhang J, Hu G, Lu Y, Ren H, Huang Y, Wen Y, Ji B, Wang D, Wang H, Liu H, Ma N, Zhang L, Pan G, Qu Y, Wang H, Zhang W, Miao Z, Yao H. CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment. Nat Commun 2024; 15:5524. [PMID: 38951485 PMCID: PMC11217373 DOI: 10.1038/s41467-024-49684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yuli Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yin Huang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binrui Ji
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Huisheng Liu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Ning Ma
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Guangjin Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Zhichao Miao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Hewitt SC, Gruzdev A, Willson CJ, Wu SP, Lydon JP, Galjart N, DeMayo FJ. Chromatin architectural factor CTCF is essential for progesterone-dependent uterine maturation. FASEB J 2023; 37:e23103. [PMID: 37489832 PMCID: PMC10372848 DOI: 10.1096/fj.202300862r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Receptors for estrogen and progesterone frequently interact, via Cohesin/CTCF loop extrusion, at enhancers distal from regulated genes. Loss-of-function CTCF mutation in >20% of human endometrial tumors indicates its importance in uterine homeostasis. To better understand how CTCF-mediated enhancer-gene interactions impact endometrial development and function, the Ctcf gene was selectively deleted in female reproductive tissues of mice. Prepubertal Ctcfd/d uterine tissue exhibited a marked reduction in the number of uterine glands compared to those without Ctcf deletion (Ctcff/f mice). Post-pubertal Ctcfd/d uteri were hypoplastic with significant reduction in both the amount of the endometrial stroma and number of glands. Transcriptional profiling revealed increased expression of stem cell molecules Lif, EOMES, and Lgr5, and enhanced inflammation pathways following Ctcf deletion. Analysis of the response of the uterus to steroid hormone stimulation showed that CTCF deletion affects a subset of progesterone-responsive genes. This finding indicates (1) Progesterone-mediated signaling remains functional following Ctcf deletion and (2) certain progesterone-regulated genes are sensitive to Ctcf deletion, suggesting they depend on gene-enhancer interactions that require CTCF. The progesterone-responsive genes altered by CTCF ablation included Ihh, Fst, and Errfi1. CTCF-dependent progesterone-responsive uterine genes enhance critical processes including anti-tumorigenesis, which is relevant to the known effectiveness of progesterone in inhibiting progression of early-stage endometrial tumors. Overall, our findings reveal that uterine Ctcf plays a key role in progesterone-dependent expression of uterine genes underlying optimal post-pubertal uterine development.
Collapse
Affiliation(s)
| | | | | | - San-Pin Wu
- Pregnancy & Female Reproduction, DIR RDBL, NIEHS RTP, NC
| | | | - Niels Galjart
- Dept. of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
3
|
Olbrich T, Ruiz S. Genome architecture and totipotency: An intertwined relation during early embryonic development. Bioessays 2022; 44:e2200029. [PMID: 35560026 DOI: 10.1002/bies.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Abstract
Chromosomes are not randomly packed and positioned into the nucleus but folded in higher-order chromatin structures with defined functions. However, the genome of a fertilized embryo undergoes a dramatic epigenetic reprogramming characterized by extensive chromatin relaxation and the lack of a defined three-dimensional structure. This reprogramming is followed by a slow genome refolding that gradually strengthens the chromatin architecture during preimplantation development. Interestingly, genome refolding during early development coincides with a progressive loss of developmental potential suggesting a link between chromatin organization and cell plasticity. In agreement, loss of chromatin architecture upon depletion of the insulator transcription factor CTCF in embryonic stem cells led to the upregulation of the transcriptional program found in totipotent cells of the embryo, those with the highest developmental potential. This essay will discuss the impact of genome folding in controlling the expression of transcriptional programs involved in early development and their plastic-associated features.
Collapse
Affiliation(s)
- Teresa Olbrich
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Segueni J, Noordermeer D. CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 2022; 20:2685-2698. [PMID: 35685367 PMCID: PMC9166472 DOI: 10.1016/j.csbj.2022.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.
Collapse
|
5
|
Sur S, Steele R, Ko BCB, Zhang J, Ray RB. Long noncoding RNA ELDR promotes cell cycle progression in normal oral keratinocytes through induction of a CTCF-FOXM1-AURKA signaling axis. J Biol Chem 2022; 298:101895. [PMID: 35378133 PMCID: PMC9079251 DOI: 10.1016/j.jbc.2022.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.
Collapse
Affiliation(s)
- Subhayan Sur
- Departments of Pathology, Saint Louis University, Missouri, USA
| | - Robert Steele
- Departments of Pathology, Saint Louis University, Missouri, USA
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Jinsong Zhang
- Departments of Pharmacology and Physiology, Saint Louis University, Missouri, USA
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, Missouri, USA.
| |
Collapse
|
6
|
Verma R, Sharma PC. Identification of stage-specific differentially expressed genes and SNPs in gastric cancer employing RNA-Seq based transcriptome profiling. Genomics 2021; 114:61-71. [PMID: 34839019 DOI: 10.1016/j.ygeno.2021.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
We analysed over 400 million reads obtained from Illumina sequencing of six pairs of libraries representing two each of stage I, II, and III gastric tumors and corresponding normal tissues to identify differentially expressed genes (DEGs), single nucleotide polymorphisms (SNPs), and transcription factors (TFs). In total, 2207 DEGs including 972 upregulated genes and 1235 downregulated genes were detected. Of these, several stage-specific signature genes were identified. The protein-protein interaction networks involving DEGs and TFs were constructed. The KEGG pathway analysis of SNP harbouring genes revealed their involvement in different cancer related pathways like apoptosis, mTOR pathway, and MAPK signaling pathway. The SNP analysis showed implication of host genes in GO categories like immune system process, regulation of signaling, response to stress, and transport. A biased chromosomal distribution of DEGs and SNP harbouring genes was observed. Our study would provide further insights into the complex regulatory mechanisms operating during gastric tumorigenesis.
Collapse
Affiliation(s)
- Renu Verma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India.
| |
Collapse
|
7
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
8
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
9
|
Olbrich T, Vega-Sendino M, Tillo D, Wu W, Zolnerowich N, Pavani R, Tran AD, Domingo CN, Franco M, Markiewicz-Potoczny M, Pegoraro G, FitzGerald PC, Kruhlak MJ, Lazzerini-Denchi E, Nora EP, Nussenzweig A, Ruiz S. CTCF is a barrier for 2C-like reprogramming. Nat Commun 2021; 12:4856. [PMID: 34381034 PMCID: PMC8358036 DOI: 10.1038/s41467-021-25072-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023] Open
Abstract
Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.
Collapse
Affiliation(s)
- Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | | | - Wei Wu
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Raphael Pavani
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Mariajose Franco
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Elphege P Nora
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Zhao T, Zhou Y, Wang Q, Yi X, Ge S, He H, Xue S, Du B, Ge J, Dong J, Qu L, Wang L, Zhou W. QPCT regulation by CTCF leads to sunitinib resistance in renal cell carcinoma by promoting angiogenesis. Int J Oncol 2021; 59:48. [PMID: 34036385 PMCID: PMC8208629 DOI: 10.3892/ijo.2021.5228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Sunitinib is widely used as a first‑line treatment for advanced renal cell carcinoma (RCC). However, a number of patients with RCC who receive sunitinib develop drug resistance; and the biological mechanisms involved in resistance to sunitinib remain unclear. It has previously been suggested that the protein glutaminyl‑peptide cyclotransferase (QPCT) is closely related to sunitinib resistance in RCC. Thus, in the present study, in order to further examine the molecular mechanisms responsible for sunitinib resistance in RCC, sunitinib‑non‑responsive and ‑responsive RCC tissue and plasma samples were collected and additional experiments were performed in order to elucidate the molecular mechanisms responsible for sunitinib resistance in RCC. The upstream and downstream regulatory mechanisms of QPCT were also evaluated. On the whole, the data from the present study suggest that QPCT, CCCTC‑binding factor (CTCF) and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit alpha (PIK3CA) may be used as targets for predicting, reversing and treating sunitinib‑resistant RCC.
Collapse
Affiliation(s)
- Tangliang Zhao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yulin Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
- Department of Urology, Xuzhou Central Hospital, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingyun Wang
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Silun Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haowei He
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Song Xue
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bowen Du
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jie Dong
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Le Qu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
11
|
Structure-function relationships explain CTCF zinc finger mutation phenotypes in cancer. Cell Mol Life Sci 2021; 78:7519-7536. [PMID: 34657170 PMCID: PMC8629902 DOI: 10.1007/s00018-021-03946-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
CCCTC-binding factor (CTCF) plays fundamental roles in transcriptional regulation and chromatin architecture maintenance. CTCF is also a tumour suppressor frequently mutated in cancer, however, the structural and functional impact of mutations have not been examined. We performed molecular and structural characterisation of five cancer-specific CTCF missense zinc finger (ZF) mutations occurring within key intra- and inter-ZF residues. Functional characterisation of CTCF ZF mutations revealed a complete (L309P, R339W, R377H) or intermediate (R339Q) abrogation as well as an enhancement (G420D) of the anti-proliferative effects of CTCF. DNA binding at select sites was disrupted and transcriptional regulatory activities abrogated. Molecular docking and molecular dynamics confirmed that mutations in residues specifically contacting DNA bases or backbone exhibited loss of DNA binding. However, R339Q and G420D were stabilised by the formation of new primary DNA bonds, contributing to gain-of-function. Our data confirm that a spectrum of loss-, change- and gain-of-function impacts on CTCF zinc fingers are observed in cell growth regulation and gene regulatory activities. Hence, diverse cellular phenotypes of mutant CTCF are clearly explained by examining structure-function relationships.
Collapse
|
12
|
Alharbi AB, Schmitz U, Marshall AD, Vanichkina D, Nagarajah R, Vellozzi M, Wong JJ, Bailey CG, Rasko JE. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol 2020; 18:93-103. [PMID: 32816606 PMCID: PMC7834090 DOI: 10.1080/15476286.2020.1796052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - Amy D Marshall
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Darya Vanichkina
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Sydney Informatics Hub, University of Sydney , Darlington, Australia
| | - Rajini Nagarajah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Melissa Vellozzi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Justin Jl Wong
- Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - John Ej Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital , Camperdown, Australia
| |
Collapse
|
13
|
Zhang W, Liu Y, Zhou X, Zhao R, Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin Genet 2020; 97:827-834. [PMID: 32040210 DOI: 10.1111/cge.13717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Gynecological cancers pose a significant threat to women's health worldwide, with cervical cancer, ovarian cancer, and endometrial cancer having high incidences. Current gynecological cancer treatment methods mainly include surgery, chemotherapy, radiotherapy, and chemoradiotherapy. The CRISPR-Cas9 gene editing technology as a new therapeutic method has shown tremendous effect in the treatment of other cancers, promoting research on its potential therapeutic effect in gynecological cancer. In this article, we reviewed the current research status of CRISPR-Cas9 technology in gynecological cancer, focusing on the importance of studying the mechanism of CRISPR-Cas9 in gynecological cancer treatment, thereby laying a foundation for further research on its clinical application.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Kulski JK. Long Noncoding RNA HCP5, a Hybrid HLA Class I Endogenous Retroviral Gene: Structure, Expression, and Disease Associations. Cells 2019; 8:cells8050480. [PMID: 31137555 PMCID: PMC6562477 DOI: 10.3390/cells8050480] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The HCP5 RNA gene (NCBI ID: 10866) is located centromeric of the HLA-B gene and between the MICA and MICB genes within the major histocompatibility complex (MHC) class I region. It is a human species-specific gene that codes for a long noncoding RNA (lncRNA), composed mostly of an ancient ancestral endogenous antisense 3′ long terminal repeat (LTR, and part of the internal pol antisense sequence of endogenous retrovirus (ERV) type 16 linked to a human leukocyte antigen (HLA) class I promoter and leader sequence at the 5′-end. Since its discovery in 1993, many disease association and gene expression studies have shown that HCP5 is a regulatory lncRNA involved in adaptive and innate immune responses and associated with the promotion of some autoimmune diseases and cancers. The gene sequence acts as a genomic anchor point for binding transcription factors, enhancers, and chromatin remodeling enzymes in the regulation of transcription and chromatin folding. The HCP5 antisense retroviral transcript also interacts with regulatory microRNA and immune and cellular checkpoints in cancers suggesting its potential as a drug target for novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia.
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan.
| |
Collapse
|
15
|
Chen F, Yuan H, Wu W, Chen S, Yang Q, Wang J, Zhang Q, Gui B, Fan X, Chen R, Shen Y. Three additional de novo CTCF mutations in Chinese patients help to define an emerging neurodevelopmental disorder. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:218-225. [PMID: 30893510 DOI: 10.1002/ajmg.c.31698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 01/24/2023]
Abstract
CCCTC-binding factor (CTCF) is an important regulator for global genomic organization and gene expression. CTCF gene had been implicated in a novel disorder characterized by intellectual disability, feeding difficulty, developmental delay and microcephaly. So far, four patients have been reported with de novo CTCF mutations. We reported three additional Chinese patients with de novo variants in CTCF. The new evidence helped to establish the clinical validity between CTCF and the emerging disorder. We described the consistent phenotypes shared by all patients and revealed additional clinical features such as delayed or abnormal teeth development and a unique pattern of the eyebrow that may help to define a potential recognizable neurodevelopmental disorder. We also reported the first CTCF patient treated with recombinant human growth hormone. Follow-up and more case studies will further our understanding to the clinical presentations of this novel disorder and the prognosis of patients with this disorder.
Collapse
Affiliation(s)
- Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiming Yuan
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Wenyong Wu
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Baohen Gui
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|