1
|
Zhang W, Zhang J, Jiao D, Tang Q, Gao X, Li Z, Yang F, Zhao Z, Yang L. Single-Cell RNA Sequencing Reveals a Unique Fibroblastic Subset and Immune Disorder in Lichen Sclerosus Urethral Stricture. J Inflamm Res 2024; 17:5327-5346. [PMID: 39157587 PMCID: PMC11330248 DOI: 10.2147/jir.s466317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Lichen sclerosus urethral stricture disease (LS USD) is a refractory and progressive disease primarily affecting the anterior urethra in males. Various potential etiological factors, such as genetics, autoimmunity, infection, and exposure to infectious urine, have been suggested. However, the accurate etiology of LS in the male urethra remains unclear. Patients and Methods In this study, we conducted single-cell RNA sequencing to identify the transcriptional profiles of three patients with LS USD and three patients with non-LS USD. Immunofluorescence was used to confirm the single-cell sequence results. Results Our study revealed distinct subsets of vein endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs) with high proportions in LS USD, contributing to the tissue microenvironment primarily involved in proinflammatory and immune responses. In particular, FBs displayed a unique subset, Fib7, which is exclusively present in LS USD, and exhibited high expression levels of SAA1 and SAA2. The accumulation of macrophages, along with the dysregulated ratios of M1/M2-like phenotype macrophages, may be engaged in the pathogenesis of LS USD. Through cell-cell communication analysis, we identified significant interactions involving CXCL8/ACKR1 and CCR7/CCL19 in LS USD. Remarkably, Fib7 exhibited exclusive communication with IL-1B macrophages through the SAA1/FPR2 receptor-ligand pair. Conclusion Our study provides a profound understanding of the tissue microenvironment in LS USD, which may be valuable for understanding the pathogenesis of LS USD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Jiayu Zhang
- Department of Urology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, 510062, People’s Republic of China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Xiaoping Gao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Zhenyu Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Zhiguang Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Longfei Yang
- Department of Transfusion Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| |
Collapse
|
2
|
Mazalo JK, Tay SS, Kempe D, Biro M. Chemokine receptor distribution on the surface of repolarizing T cells. Biophys J 2024; 123:2328-2342. [PMID: 38327056 PMCID: PMC11331047 DOI: 10.1016/j.bpj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
T cells migrate constitutively with a polarized morphology, underpinned by signaling compartmentalization and discrete cytoskeletal organizations, giving rise to a dynamic and expansive leading edge, distinct from the stable and constricted uropod at the rear. In vivo, the motion and function of T cells at various stages of differentiation is highly directed by chemokine gradients. When cognate ligands bind chemokine receptors on their surface, T cells respond by reorientating their polarity axis and migrating toward the source of the chemokine signal. Despite the significance of such chemotactic repolarization to the accurate navigation and function of T cells, the precise signaling mechanisms that underlie it remain elusive. Notably, it remained unclear whether the distribution of chemokine receptors on the T cell surface is altered during repolarization. Here, we developed parallel cell-secreted and microfluidics-based chemokine gradient delivery methods and employed both fixed imaging and live lattice light-sheet microscopy to investigate the dynamics of chemokine receptor CCR5 on the surface of primary murine CD8+ T cells. Our findings show that, during constitutive migration, chemokine receptor distribution is largely isotropic on the T cell surface. However, upon exposure to a CCL3 gradient, surface chemokine receptor distributions exhibit a transient bias toward the uropod. The chemokine receptors then progressively redistribute from the uropod to cover the T cell surface uniformly. This study sheds new light on the dynamics of surface chemokine receptor distribution during T cell repolarization, advancing our understanding of the signaling of immune cells in the complex chemokine landscapes they navigate.
Collapse
Affiliation(s)
- Jessica K Mazalo
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Wang T, Peng R, Ni H, Zhong L, Zhang H, Wang T, Cheng H, Bao T, Jia X, Ling S. Effects of chemokine receptor CCR7 in the pathophysiology and clinical features of the immuno-inflammatory response in primary pterygium. Int Immunopharmacol 2023; 118:110086. [PMID: 37030121 DOI: 10.1016/j.intimp.2023.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Chemokine receptor 7 (CCR7) has been considered a critical biomarker in inflammation and the immune response; however, little is known about CCR7 in pterygia. This study aimed to investigate whether CCR7 participates in the pathogenesis of primary pterygia and how CCR7 affects the progression of pterygia. METHODS This was an experimental study. Slip-lamp photographs of 85 pterygium patients were used to measure the width, extent, and area of pterygia with computer software. Pterygium blood vessels and general ocular redness were quantitatively analyzed with a specific algorithm. The expression of CCR7 and its ligands C-C motif ligand 19 (CCL19) and C-C motif ligand 21 (CCL21) in control conjunctivae and excised pterygia collected during surgery were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. The phenotype of CCR7-expressing cells was identified by costaining for major histocompatibility complex II (MHC II), CD11b or CD11c. RESULTS The CCR7 level was significantly increased by 9.6-fold in pterygia compared with control conjunctivae (p = 0.008). The higher the expression of CCR7 was, the more blood vessels appeared in pterygia (r = 0.437, p = 0.002) and the more general ocular redness was (r = 0.51, p < 0.001) in pterygium patients. CCR7 was significantly associated with pterygium extent (r = 0.286, p = 0.048). In addition, we found that CCR7 colocalized with CD11b, CD11c or MHC II in dendritic cells, and immunofluorescence staining showed that CCR7-CCL21 is a potential chemokine axis in pterygium. CONCLUSIONS This work verified that CCR7 impacts the extent of primary pterygia invading the cornea and inflammation at the ocular surface, which may provide a possibility for a further in-depth understanding of the immunological mechanism in pterygia.
Collapse
|
4
|
Artinger M, Gerken OJ, Purvanov V, Legler DF. Distinct Fates of Chemokine and Surrogate Molecule Gradients: Consequences for CCR7-Guided Dendritic Cell Migration. Front Immunol 2022; 13:913366. [PMID: 35769489 PMCID: PMC9234131 DOI: 10.3389/fimmu.2022.913366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chemokine-guided leukocyte migration is a hallmark of the immune system to cope with invading pathogens. Intruder confronted dendritic cells (DCs) induce the expression of the chemokine receptor CCR7, which enables them to sense and migrate along chemokine gradients to home to draining lymph nodes, where they launch an adaptive immune response. Chemokine-mediated DC migration is recapitulated and intensively studied in 3D matrix migration chambers. A major caveat in the field is that chemokine gradient formation and maintenance in such 3D environments is generally not assessed. Instead, fluorescent probes, mostly labelled dextran, are used as surrogate molecules, thereby neglecting important electrochemical properties of the chemokines. Here, we used site-specifically, fluorescently labelled CCL19 and CCL21 to study the establishment and shape of the chemokine gradients over time in the 3D collagen matrix. We demonstrate that CCL19 and particularly CCL21 establish stable, but short-distance spanning gradients with an exponential decay-like shape. By contrast, dextran with its neutral surface charge forms a nearly linear gradient across the entire matrix. We show that the charged C-terminal tail of CCL21, known to interact with extracellular matrix proteins, is determinant for shaping the chemokine gradient. Importantly, DCs sense differences in the shape of CCL19 and CCL21 gradients, resulting in distinct spatial migratory responses.
Collapse
Affiliation(s)
- Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver J. Gerken
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- *Correspondence: Daniel F. Legler,
| |
Collapse
|
5
|
Gowhari Shabgah A, Al-Obaidi ZMJ, Sulaiman Rahman H, Kamal Abdelbasset W, Suksatan W, Bokov DO, Thangavelu L, Turki Jalil A, Jadidi-Niaragh F, Mohammadi H, Mashayekhi K, Gholizadeh Navashenaq J. Does CCL19 act as a double-edged sword in cancer development? Clin Exp Immunol 2021; 207:164-175. [PMID: 35020885 PMCID: PMC8982982 DOI: 10.1093/cei/uxab039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered a life-threatening disease, and several factors are involved in its development. Chemokines are small proteins that physiologically exert pivotal roles in lymphoid and non-lymphoid tissues. The imbalance or dysregulation of chemokines has contributed to the development of several diseases, especially cancer. CCL19 is one of the homeostatic chemokines that is abundantly expressed in the thymus and lymph nodes. This chemokine, which primarily regulates immune cell trafficking, is involved in cancer development. Through the induction of anti-tumor immune responses and inhibition of angiogenesis, CCL19 exerts tumor-suppressive functions. In contrast, CCL19 also acts as a tumor-supportive factor by inducing inflammation, cell growth, and metastasis. Moreover, CCL19 dysregulation in several cancers, including colorectal, breast, pancreatic, and lung cancers, has been considered a tumor biomarker for diagnosis and prognosis. Using CCL19-based therapeutic approaches has also been proposed to overcome cancer development. This review will shed more light on the multifarious function of CCL19 in cancer and elucidate its application in diagnosis, prognosis, and even therapy. It is expected that the study of CCL19 in cancer might be promising to broaden our knowledge of cancer development and might introduce novel approaches in cancer management.
Collapse
Affiliation(s)
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, Iraq,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha institute of medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus,College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran,Correspondence: Jamshid Gholizadeh Navashenaq, Bam University of Medical Sciences, Bam, Kerman, Iran. E-mail: ;
| |
Collapse
|
6
|
Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JE. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells 2021; 10:3439. [PMID: 34943947 PMCID: PMC8700135 DOI: 10.3390/cells10123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Intravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration assays can result in misrepresentation of important physiologic processes or cause subtle changes in critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish the need for a widely implemented framework to account for scale and correct observations of cell motion. We then extend the concept of scale to new approaches that seek to bridge the current "black box" between single-cell behaviour and systemic response.
Collapse
Affiliation(s)
- Jennifer Frattolin
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Daniel J. Watson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Willy V. Bonneuil
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Matthew J. Russell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Francesca Fasanella Masci
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Mikaila Bandara
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Bindi S. Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Robert J. B. Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| |
Collapse
|
7
|
Plasticity of Proinflammatory Macrophages Depends on Their Polarization Stage during Human MSC Immunomodulation—An In Vitro Study Using THP-1 and Human Primary Macrophages. IMMUNO 2021. [DOI: 10.3390/immuno1040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are well-known for their immunomodulatory potential. In recent clinical trials and in vivo studies, hMSCs were used as therapeutic measures to dampen inflammation. In this context, their effect on macrophages in vivo has been described to induce a phenotype change shifting from a proinflammatory to an anti-inflammatory environment. Despite several in vitro studies that investigated the potential of hMSCs to inhibit the polarization of macrophages into the proinflammatory M1 subtype, it is still unclear if hMSCs affect polarized M1 macrophages or if they control the environment by inhibiting the M1 polarization of unpolarized macrophages. Here, a comparative in vitro investigation of hMSC immunomodulation via soluble factors concerning the influence on the polarization of macrophages to M1 and on polarized M1 macrophages is presented. Human primary monocyte-derived macrophages (hMDMs) as well as THP-1 cells were used for this investigation. The macrophage subtype was analyzed by gene expression as well as cytokine secretion. hMSCs affected cytokine secretion of polarizing macrophages, while changes in gene expression were evident in polarized M1 macrophages. These effects were observed in THP-1 and hMDM macrophages. In conclusion, we suggest that hMSCs implement their immunomodulatory effects on polarizing and polarized macrophages in different ways.
Collapse
|
8
|
Chen R, Huang M, Yang X, Chen XH, Shi MY, Li ZF, Chen ZN, Wang K. CALR-TLR4 Complex Inhibits Non-Small Cell Lung Cancer Progression by Regulating the Migration and Maturation of Dendritic Cells. Front Oncol 2021; 11:743050. [PMID: 34660305 PMCID: PMC8517398 DOI: 10.3389/fonc.2021.743050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer is a common malignant tumor that threatens human life and is associated with high morbidity and mortality rates. Calreticulin (CALR) is a antigen characteristic of immunogenic cell death in non-small cell lung cancer (NSCLC), which is closely related to anti-tumor immunity, but its specific mechanism in anti-tumor immunity remains unclear. Methods Immunohistochemical staining was performed to detect the expression of CALR and dendritic cell-lysosome-associated membrane glycoprotein (DC-LAMP) in NSCLC tissues. The cell supernatant was used to induce migration and maturation of dendritic cells (DCs). Western blot and real-time PCR were used to investigate the corresponding molecule expression in the CALR-Toll-like receptor 4 (TLR4)-MyD88 signaling pathway. In vivo experiments were conducted to evaluate the role of mCALR in lung cancer progression. Results The expression of CALR on NSCLC cell membrane (mCALR) and DC infiltration in NSCLC were positively correlated and were closely related to the prognosis of NSCLC patients. Moreover, mCALR facilitated the migration and maturation of DCs by activating CALR-TLR4-MyD88 signaling and increasing the secretion of TNFα and CCL19, which was inhibited by the loss of TLR4. In vivo experiments demonstrated that mCALR inhibited lung cancer progression by facilitating DC infiltration in lung cancer tissues. Conclusion Our study explores the function and mechanism of the CALR-TLR4 complex in DC migration and maturation and investigates the inhibitory effect of the CALR-TLR4 complex on lung cancer progression, providing a theoretical basis and ideas for immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Ruo Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Huang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xu Yang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hong Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ming-Yan Shi
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhuo-Fan Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Uetz-von Allmen E, Samson GPB, Purvanov V, Maeda T, Legler DF. CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration. Front Immunol 2021; 12:702453. [PMID: 34603281 PMCID: PMC8482423 DOI: 10.3389/fimmu.2021.702453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.
Collapse
Affiliation(s)
- Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Takahiro Maeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
van Aalst E, Wylie BJ. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. Front Mol Biosci 2021; 8:724603. [PMID: 34490352 PMCID: PMC8417553 DOI: 10.3389/fmolb.2021.724603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Cholesterol as an allosteric modulator of G protein-coupled receptor (GPCR) function is well documented. This quintessential mammalian lipid facilitates receptor–ligand interactions and multimerization states. Functionally, this introduces a complicated mechanism for the homeostatic modulation of GPCR signaling. Chemokine receptors are Class A GPCRs responsible for immune cell trafficking through the binding of endogenous peptide ligands. CCR3 is a CC motif chemokine receptor expressed by eosinophils and basophils. It traffics these cells by transducing the signal stimulated by the CC motif chemokine primary messengers 11, 24, and 26. These behaviors are close to the human immunoresponse. Thus, CCR3 is implicated in cancer metastasis and inflammatory conditions. However, there is a paucity of experimental evidence linking the functional states of CCR3 to the molecular mechanisms of cholesterol–receptor cooperativity. In this vein, we present a means to combine codon harmonization and a maltose-binding protein fusion tag to produce CCR3 from E. coli. This technique yields ∼2.6 mg of functional GPCR per liter of minimal media. We leveraged this protein production capability to investigate the effects of cholesterol on CCR3 function in vitro. We found that affinity for the endogenous ligand CCL11 increases in a dose-dependent manner with cholesterol concentration in both styrene:maleic acid lipid particles (SMALPs) and proteoliposomes. This heightened receptor activation directly translates to increased signal transduction as measured by the GTPase activity of the bound G-protein α inhibitory subunit 3 (Gαi3). This work represents a critical step forward in understanding the role of cholesterol-GPCR allostery in regulation of signal transduction.
Collapse
Affiliation(s)
- Evan van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
11
|
A Versatile Toolkit for Semi-Automated Production of Fluorescent Chemokines to Study CCR7 Expression and Functions. Int J Mol Sci 2021; 22:ijms22084158. [PMID: 33923834 PMCID: PMC8072677 DOI: 10.3390/ijms22084158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chemokines guide leukocyte migration in different contexts, including homeostasis, immune surveillance and immunity. The chemokines CCL19 and CCL21 control lymphocyte and dendritic cell migration and homing to lymphoid organs. Thereby they orchestrate adaptive immunity in a chemokine receptor CCR7-dependent manner. Likewise, cancer cells that upregulate CCR7 expression are attracted by these chemokines and metastasize to lymphoid organs. In-depth investigation of CCR7 expression and chemokine-mediated signaling is pivotal to understand their role in health and disease. Appropriate fluorescent probes to track these events are increasingly in demand. Here, we present an approach to cost-effectively produce and fluorescently label CCL19 and CCL21 in a semi-automated process. We established a versatile protocol for the production of recombinant chemokines harboring a small C-terminal S6-tag for efficient and site-specific enzymatic labelling with an inorganic fluorescent dye of choice. We demonstrate that the fluorescently labeled chemokines CCL19-S6Dy649P1 and CCL21-S6Dy649P1 retain their full biological function as assessed by their abilities to mobilize intracellular calcium, to recruit β-arrestin to engaged receptors and to attract CCR7-expressing leukocytes. Moreover, we show that CCL19-S6Dy649P1 serves as powerful reagent to monitor CCR7 internalization by time-lapse confocal video microscopy and to stain CCR7-positive primary human and mouse T cell sub-populations.
Collapse
|
12
|
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y, Peng Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45:809-823. [PMID: 33650640 PMCID: PMC7859922 DOI: 10.3892/or.2020.7906] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Ya Zheng
- Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| |
Collapse
|
13
|
James KD, Legler DF, Purvanov V, Ohigashi I, Takahama Y, Parnell SM, White AJ, Jenkinson WE, Anderson G. Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Adv 2021; 5:99-112. [PMID: 33570638 PMCID: PMC7805325 DOI: 10.1182/bloodadvances.2020003192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/31/2020] [Indexed: 01/16/2023] Open
Abstract
The release of newly selected αβT cells from the thymus is key in establishing a functional adaptive immune system. Emigration of the first cohorts of αβT cells produced during the neonatal period is of particular importance, because it initiates formation of the peripheral αβT-cell pool and provides immune protection early in life. Despite this, the cellular and molecular mechanisms of thymus emigration are poorly understood. We examined the involvement of diverse stromal subsets and individual chemokine ligands in this process. First, we demonstrated functional dichotomy in the requirement for CCR7 ligands and identified CCL21, but not CCL19, as an important regulator of neonatal thymus emigration. To explain this ligand-specific requirement, we examined sites of CCL21 production and action and found Ccl21 gene expression and CCL21 protein distribution occurred within anatomically distinct thymic areas. Although Ccl21 transcription was limited to subsets of medullary epithelium, CCL21 protein was captured by mesenchymal stroma consisting of integrin α7+ pericytes and CD34+ adventitial cells at sites of thymic exit. This chemokine compartmentalization involved the heparan sulfate-dependent presentation of CCL21 via its C-terminal extension, explaining the absence of a requirement for CCL19, which lacks this domain and failed to be captured by thymic stroma. Collectively, we identified an important role for CCL21 in neonatal thymus emigration, revealing the importance of this chemokine in initial formation of the peripheral immune system. Moreover, we identified an intrathymic mechanism involving cell-specific production and presentation of CCL21, which demonstrated a functional synergy between thymic epithelial and mesenchymal cells for αβT-cell emigration.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Daniel F Legler
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; and
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrea J White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M, Legler DF. CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol 2020; 107:1137-1154. [PMID: 32533638 DOI: 10.1002/jlb.2ma0420-295rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
The chemokine CCL20 is broadly produced by endothelial cells in the liver, the lung, in lymph nodes and mucosal lymphoid tissues, and recruits CCR6 expressing leukocytes, particularly dendritic cells, mature B cells, and subpopulations of T cells. How CCL20 is systemically scavenged is currently unknown. Here, we identify that fluorescently labeled human and mouse CCL20 are efficiently taken-up by the atypical chemokine receptor ACKR4. CCL20 shares ACKR4 with the homeostatic chemokines CCL19, CCL21, and CCL25, although with a lower affinity. We demonstrate that all 4 human chemokines recruit β-arrestin1 and β-arrestin2 to human ACKR4. Similarly, mouse CCL19, CCL21, and CCL25 equally activate the human receptor. Interestingly, at the same chemokine concentration, mouse CCL20 did not recruit β-arrestins to human ACKR4. Further cross-species analysis suggests that human ACKR4 preferentially takes-up human CCL20, whereas mouse ACKR4 similarly internalizes mouse and human CCL20. Furthermore, we engineered a fluorescently labeled chimeric chemokine consisting of the N-terminus of mouse CCL25 and the body of mouse CCL19, termed CCL25_19, which interacts with and is taken-up by human and mouse ACKR4.
Collapse
Affiliation(s)
- Christoph Matti
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Giulia D'Uonnolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Angela Salnikov
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Tobias D Strobel
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Lisa Spannagel
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Kouzeli A, Collins PJ, Metzemaekers M, Meyrath M, Szpakowska M, Artinger M, Struyf S, Proost P, Chevigne A, Legler DF, Eberl M, Moser B. CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Front Immunol 2020; 11:561404. [PMID: 33123134 PMCID: PMC7570948 DOI: 10.3389/fimmu.2020.561404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Reflecting their importance in immunity, the activity of chemokines is regulated on several levels, including tissue and context-specific expression and availability of their cognate receptor on target cells. Chemokine synergism, affecting both chemokine and chemokine receptor function, has emerged as an additional control mechanism. We previously demonstrated that CXCL14 is a positive allosteric modulator of CXCR4 in its ability to synergize with CXCL12 in diverse cellular responses. Here, we have extended our study to additional homeostatic, as well as a selection of inflammatory chemokine systems. We report that CXCL14 strongly synergizes with low (sub-active) concentrations of CXCL13 and CCL19/CCL21 in in vitro chemotaxis with immune cells expressing the corresponding receptors CXCR5 and CCR7, respectively. CXCL14 by itself was inactive, not only on cells expressing CXCR5 or CCR7 but also on cells expressing any other known conventional or atypical chemokine receptor, as assessed by chemotaxis and/or β-arrestin recruitment assays. Furthermore, synergistic migration responses between CXCL14 and inflammatory chemokines CXCL10/CXCL11 and CCL5, targeting CXCR3 and CCR5, respectively, were marginal and occasional synergistic Ca2+ flux responses were observed. CXCL14 bound to 300-19 cells and interfered with CCL19 binding to CCR7-expressing cells, suggesting that these cellular interactions contributed to the reported CXCL14-mediated synergistic activities. We propose a model whereby tissue-expressed CXCL14 contributes to cell localization under steady-state conditions at sites with prominent expression of homeostatic chemokines.
Collapse
Affiliation(s)
- Ariadni Kouzeli
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Paul J Collins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Andy Chevigne
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Matthias Eberl
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bernhard Moser
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
16
|
Matti C, Salnikov A, Artinger M, D'Agostino G, Kindinger I, Uguccioni M, Thelen M, Legler DF. ACKR4 Recruits GRK3 Prior to β-Arrestins but Can Scavenge Chemokines in the Absence of β-Arrestins. Front Immunol 2020; 11:720. [PMID: 32391018 PMCID: PMC7188906 DOI: 10.3389/fimmu.2020.00720] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Chemokines are essential for guiding cell migration. Atypical chemokine receptors (ACKRs) contribute to the cell migration process by binding, internalizing and degrading local chemokines, which enables the formation of confined gradients. ACKRs are heptahelical membrane spanning molecules structurally related to G-protein coupled receptors (GPCRs), but seem to be unable to signal through G-proteins upon ligand binding. ACKR4 internalizes the chemokines CCL19, CCL21, and CCL25 and is best known for shaping functional CCL21 gradients. Ligand binding to ACKR4 has been shown to recruit β-arrestins that has led to the assumption that chemokine scavenging relies on β-arrestin-mediated ACKR4 trafficking, a common internalization route taken by class A GPCRs. Here, we show that CCL19, CCL21, and CCL25 readily recruited β-arrestin1 and β-arrestin2 to human ACKR4, but found no evidence for β-arrestin-dependent or independent ACKR4-mediated activation of the kinases Erk1/2, Akt, or Src. However, we demonstrate that β-arrestins interacted with ACKR4 in the steady-state and contributed to the spontaneous trafficking of the receptor in the absence of chemokines. Deleting the C-terminus of ACKR4 not only interfered with the interaction of β-arrestins, but also with the uptake of fluorescently labeled cognate chemokines. We identify the GPCR kinase GRK3, and to a lesser extent GRK2, but not GRK4, GRK5, and GRK6, to be recruited to chemokine-stimulated ACKR4. We show that GRK3 recruitment proceded the recruitment of β-arrestins upon ACKR4 engagement and that GRK2/3 inhibition partially interfered with steady-state interaction and chemokine-driven recruitment of β-arrestins to ACKR4. Overexpressing β-arrestin2 accelerated the uptake of fluorescently labeled CCL19, indicating that β-arrestins contribute to the chemokine scavenging activity of ACKR4. By contrast, cells lacking β-arrestins were still capable to take up fluorescently labeled CCL19 demonstrating that β-arrestins are dispensable for chemokine scavenging by ACKR4.
Collapse
Affiliation(s)
- Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Angela Salnikov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ilona Kindinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
18
|
Liu MZ, Chen SM, Xu Y, Kong YG, Deng YQ, Li F, Tao ZZ. Increased Expressions and Roles of CC Chemokine Ligand 21 and CC Chemokine Ligand 25 in Chronic Rhinosinusitis with Nasal Polyps. Int Arch Allergy Immunol 2019; 181:159-169. [PMID: 31825941 DOI: 10.1159/000504476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Chronic rhinosinusitis (CRS) is a local inflammation of the nasal mucosa and sinus that persists for >12 weeks. As CC chemokine ligand (CCL) 19 expression is known to be elevated in CRS, and CCL 19, CCL21, and CCL25 share the same atypical chemokine receptor 4, so we focused on CCL21 and CCL25. OBJECTIVES To investigate the expression of CCL21 and CCL25 in different types of CRS and their significance in CRS development. METHODS A total of 116 patients participated in the study, and uncinate process mucosa or nasal polyp (NP) specimens were collected during surgery. Western blotting and immunohistochemistry were performed to detect the expression of CCL21 and CCL25, respectively, in the nasal mucosa. Immunofluorescence was used to determine their cellular localization in NPs, whereas macrophage culture was used to determine their relationships with macrophages. RESULTS Immunohistochemistry revealed that the expressions of CCL21 and CCL25 were increased in NPs only. Western blotting revealed that these expressions were gradually increased in control, CRS without NP and CRS with NP groups and were positively correlated with disease severity. Furthermore, increased expressions of CCL21 and CCL25 in NPs were not related to eosinophil infiltration. Immunofluorescence results demonstrated colocalization of CCL25+ cells and CD68+ macrophages. CCL25 expression was increased in macrophage culture, especially in M1 macrophages, while CCL21 expression was not significantly associated with macrophages. CONCLUSIONS CCL21 and CCL25 were significantly upregulated in NPs and positively correlated with disease severity. CCL25 upregulation was related to M1 macrophages.
Collapse
Affiliation(s)
- Meng-Zhi Liu
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Ming Chen
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Gang Kong
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Qin Deng
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Zhang Tao
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China, .,Otolaryngology-Head and Neck Surgery Research Institute, Renmin Hospital of Wuhan University, Wuhan, China,
| |
Collapse
|
19
|
Laufer JM, Hauser MA, Kindinger I, Purvanov V, Pauli A, Legler DF. Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Rep 2019; 29:995-1009.e6. [DOI: 10.1016/j.celrep.2019.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/09/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
|
20
|
Jakobs BD, Spannagel L, Purvanov V, Uetz-von Allmen E, Matti C, Legler DF. Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. Int J Mol Sci 2019; 20:E2597. [PMID: 31137829 PMCID: PMC6566259 DOI: 10.3390/ijms20102597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023] Open
Abstract
The chemokine receptor CCR7 plays a pivotal role in health and disease. In particular, CCR7 controls homing of antigen-bearing dendritic cells and T cells to lymph nodes, where adaptive immune responses are initiated. However, CCR7 also guides T cells to inflamed synovium and thereby contributes to rheumatoid arthritis and promotes cancer cell migration and metastasis formation. Nanobodies have recently emerged as versatile tools to study G-protein-coupled receptor functions and are being tested in diagnostics and therapeutics. In this study, we designed a strategy to engineer novel nanobodies recognizing human CCR7. We generated a nanobody library based on a solved crystal structure of the nanobody Nb80 recognizing the β2-adrenergic receptor (β2AR) and by specifically randomizing two segments within complementarity determining region 1 (CDR1) and CDR3 of Nb80 known to interact with β2AR. We fused the nanobody library to one half of split-YFP in order to identify individual nanobody clones interacting with CCR7 fused to the other half of split-YFP using bimolecular fluorescence complementation. We present three novel nanobodies, termed Nb1, Nb5, and Nb38, that recognize human CCR7 without interfering with G-protein-coupling and downstream signaling. Moreover, we were able to follow CCR7 trafficking upon CCL19 triggering using Nb1, Nb5, and Nb38.
Collapse
Affiliation(s)
- Barbara D Jakobs
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland.
| | - Lisa Spannagel
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
- Faculty of Biology, University of Konstanz, D-78464 Konstanz, Germany.
| |
Collapse
|