1
|
Ma J, Zheng S, An C, Han H, Li Q, Huang Y, Xiong G, Chen S, Guo S, Wang Z, Wei W, Shang Y, Ji Y, Yang C, Choe J, Yuan Q, Fan Y, Zhang C, Lin S. Pathogenic mechanism and therapeutic intervention of impaired N 7-methylguanosine (m 7G) tRNA modification. Proc Natl Acad Sci U S A 2024; 121:e2405886121. [PMID: 39471230 DOI: 10.1073/pnas.2405886121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Mutations modification enzymes including the tRNA N7-methylguanosine (m7G) methyltransferase complex component WDR4 were frequently found in patients with neural disorders, while the pathogenic mechanism and therapeutic intervention strategies are poorly explored. In this study, we revealed that patient-derived WDR4 mutation leads to temporal and cell-type-specific neural degeneration, and directly causes neural developmental disorders in mice. Mechanistically, WDR4 point mutation disrupts the interaction between WDR4 and METTL1 and accelerates METTL1 protein degradation. We further uncovered that impaired tRNA m7G modification caused by Wdr4 mutation decreases the mRNA translation of genes involved in mTOR pathway, leading to elevated endoplasmic reticulum stress markers, and increases neural cell apoptosis. Importantly, treatment with stress-attenuating drug Tauroursodeoxycholate (TUDCA) significantly decreases neural cell death and improves neural functions of the Wdr4 mutated mice. Moreover, adeno-associated virus mediated transduction of wild-type WDR4 restores METTL1 protein level and tRNA m7G modification in the mouse brain, and achieves long-lasting therapeutic effect in Wdr4 mutated mice. Most importantly, we further demonstrated that both TUDCA treatment and WDR4 restoration significantly improve the survival and functions of human iPSCs-derived neuron stem cells that harbor the patient's WDR4 mutation. Overall, our study uncovers molecular insights underlying WDR4 mutation in the pathogenesis of neural diseases and develops two promising therapeutic strategies for treatment of neural diseases caused by impaired tRNA modifications.
Collapse
Affiliation(s)
- Jieyi Ma
- Department of Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyi Zheng
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hui Han
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiwen Li
- Department of State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gan Xiong
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Chen
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyao Guo
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyu Wang
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Wei
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yudan Shang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yushan Ji
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Cuiyun Yang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
- Department of Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Quan Yuan
- Department of State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Canfeng Zhang
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuibin Lin
- Department of Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
2
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
3
|
Zhao Y, Liu L, Hao J, Wang H, Cao Y, Lan Y, Ji L. Identification and validation of novel genes related to immune microenvironment in polycystic ovary syndrome. Medicine (Baltimore) 2024; 103:e40229. [PMID: 39470566 PMCID: PMC11521087 DOI: 10.1097/md.0000000000040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most complicated chronic inflammatory diseases in women of reproductive age and is one of the primary factors responsible for infertility. There is substantial dispute relating to the pathophysiology of PCOS. Consequently, there is a critical need for further research to identify the factors underlying the pathophysiology of PCOS. Three transcriptome profiles of granulosa cells from patients with PCOS and normal controls were obtained from the gene expression integration database. We also obtained relevant microarrays of granulocytes prepared from PCOS patients and normal controls from the gene expression integration database. Then, we used the R package to perform correlations and identify differences between PCOS and normal controls with regard to immune infiltrating cells and functionality. Subsequently, intersecting genes were identified and risk models were constructed. Finally, the results were validated by enzyme linked immunosorbent assay and real-time PCR. We identified 8 genes related to cuproptosis (SLC31A1, PDHB, PDHA1, DLST, DLD, DLAT, DBT, and ATP7A) and 5 genes related to m7G (SNUPN, NUDT16, GEMIN5, DCPS, and EIF4E3) that were associated with immune infiltration. Furthermore, the expression levels of DLAT (P = .049) and NUDT16 (P = .024) differed significantly between the PCOS patients and normal controls, as revealed by multifactorial analysis. Both DLAT and NUDT16 were negatively correlated with immune cell expression and function and expression levels were significantly lower in the PCOS group. Finally, real-time PCR and enzyme linked immunosorbent assay demonstrated that the expression levels of DLAT and NUDT16 were significantly reduced in the granulosa cells of PCOS patients. In conclusion, our findings shed fresh light on the roles of immune infiltration, cuproptosis, and m7G alternations in PCOS. We also provide a reliable biomarker for the pathological classification of PCOS patients.
Collapse
Affiliation(s)
- Yuemeng Zhao
- Acupuncture and Moxibustion Department, Bao'an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Liying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Jianheng Hao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Haijun Wang
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| | - Yuxia Cao
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| | - Ying Lan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Laixi Ji
- Acupuncture and Moxibustion Department, Bao'an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
- Acupuncture and Tuina School, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
6
|
Li J, Li C, Li X, Chen Y, Li Z, Lin Y, Jing H, Wang Y, Yang H. Establishment and assessment of an oral squamous cell carcinoma N7-methylguanosine methyltransferase associated microRNA prognostic model. J Cancer 2024; 15:6022-6037. [PMID: 39440068 PMCID: PMC11493003 DOI: 10.7150/jca.98350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/30/2024] [Indexed: 10/25/2024] Open
Abstract
Background: N7-methylguanosine (m7G) methyltransferases and microRNAs (miRNAs) are closely associated with tumor progression. However, the role of m7G methyltransferase-related miRNAs as prognostic markers in oral squamous cell carcinoma (OSCC) has not been studied. This study aimed to explore the m7G methyltransferase-related miRNAs in OSCC, establish a prognostic model based on m7G methyltransferase-related miRNAs, investigate their correlation with immune cell infiltration, and assess their potential prognostic value. Methods: Transcriptional and clinical data of patients with OSCC were obtained from The Cancer Genome Atlas (TCGA) database. TargetScan and miRWalk were used to predict m7G methyltransferase-related miRNAs. Subsequently, differentially expressed m7G methyltransferase-related miRNAs in TCGA-OSCC were selected. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to build an m7G methyltransferase-related miRNA risk prognostic model for TCGA-OSCC. Patients were stratified into high- and low-risk groups. The predictive and diagnostic accuracies of the risk prognostic model were further validated using Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve analysis, independent prognosis analysis, and nomogram plots. Finally, quantitative real-time polymerase chain reaction (qPCR) was used to validate the expression levels of m7G methyltransferase-related miRNAs in postoperative cancer and adjacent normal tissues from 60 patients with OSCC. Results: Through Cox and LASSO regression analysis, six candidate miRNAs (hsa-miR-338-3p, hsa-miR-1251-3p, hsa-miR-3129-5p, hsa-miR-4633-3p, hsa-miR-216a-3p, and hsa-miR-6503-3p) most relevant to the prognosis of patients with OSCC were identified to construct an m7G methyltransferase-related miRNA risk prognostic model. In this model, the overall survival (OS) of the high-risk group was significantly shorter than that of the low-risk group (P < 0.001). The model effectively predicted prognosis and served as an independent prognostic indicator for patients with OSCC. Compared with the low-risk group, the high-risk group exhibited a significantly increased capacity for immune cell infiltration (P < 0.05), while the activation and initiation abilities of immune cells were decreased. Finally, six m7G methyltransferase-related miRNAs were validated in OSCC tissue samples. Conclusion: The risk prognostic model based on six m7G methyltransferase-related miRNAs can predict the OS rate of patients with OSCC and has the potential to guide individualized treatment. This prognostic model is closely associated with immune cell infiltration in patients with OSCC.
Collapse
Affiliation(s)
- Jianrong Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Chu Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Huan Jing
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yufan Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hongyu Yang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
7
|
Kaneko S, Miyoshi K, Tomuro K, Terauchi M, Tanaka R, Kondo S, Tani N, Ishiguro KI, Toyoda A, Kamikouchi A, Noguchi H, Iwasaki S, Saito K. Mettl1-dependent m 7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun 2024; 15:8147. [PMID: 39317727 PMCID: PMC11422498 DOI: 10.1038/s41467-024-52389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Modification of guanosine to N7-methylguanosine (m7G) in the variable loop region of tRNA is catalyzed by the METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) causes no major effect on the development of non-gonadal tissues, but abolishes the production of elongated spermatids and mature sperm, which is fully rescued by expression of a Mettl1-transgene, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m7G is required for spermatogenesis. Mettl1-KO results in a loss of m7G modification on a subset of tRNAs and decreased tRNA abundance. Ribosome profiling shows that Mettl1-KO led to ribosomes stalling at codons decoded by tRNAs that were reduced in abundance. Mettl1-KO also significantly reduces the translation efficiency of genes involved in elongated spermatid formation and sperm stability. Germ cell-specific expression of Mettl1 rescues disrupted m7G tRNA modification and tRNA abundance in Mettl1-KO testes but not in non-gonadal tissues. Ribosome stalling is much less detectable in non-gonadal tissues than in Mettl1-KO testes. These findings reveal a developmental role for m7G tRNA modification and indicate that m7G modification-dependent tRNA abundance differs among tissues.
Collapse
Affiliation(s)
- Shunya Kaneko
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Keita Miyoshi
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan.
| |
Collapse
|
8
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
9
|
Zhao Z, Yan W, Weng X. RNA modifications identification based on chemical reactions. Bioorg Med Chem 2024; 111:117861. [PMID: 39079454 DOI: 10.1016/j.bmc.2024.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
RNA modification identification is an emerging field in epigenetics due to its indispensable regulatory role in the cell life cycle. With advancements in identification methods, an increasing number of RNA modifications has been discovered, thereby driving the development of more efficient and accurate techniques for localizing modified RNAs and elucidating their functions. High-throughput sequencing approaches for modified RNA detection can be categorized into antibody-based, enzymatic-based, and chemical-labeling-based methods. Given the intrinsic chemical reactions involved in all biochemical processes, we provide a comprehensive review of recent advancements in artificial chemical labeling and transformations of ten distinct RNA modifications and their applications in sequencing. Our aim is to contribute to a deeper understanding of the mechanisms underlying these modifications. We focus on the chemical reactions associated with RNA modifications and briefly compare the advantages and disadvantages of detection methods based on these reactions. Additionally, we introduce several approaches that identify multiple modifications through chemical labeling. As the field of RNA modification research continues to expand, we anticipate that the techniques and insights presented in this review will serve as a valuable resource for future studies aimed at further elucidating the functional roles of RNA modifications in biological processes.
Collapse
Affiliation(s)
- Zhengjia Zhao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China
| | - Weikai Yan
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China
| | - Xiaocheng Weng
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China.
| |
Collapse
|
10
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Zhao Y, Jin J, Gao W, Qiao J, Wei L. Moss-m7G: A Motif-Based Interpretable Deep Learning Method for RNA N7-Methlguanosine Site Prediction. J Chem Inf Model 2024; 64:6230-6240. [PMID: 39011571 DOI: 10.1021/acs.jcim.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.
Collapse
Affiliation(s)
- Yanxi Zhao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Wenjia Gao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
- School of Informatics, Xiamen University, Xiamen 361104, China
| |
Collapse
|
14
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
15
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
16
|
Wu P, Zhang Q, Zhong P, Chai L, Luo Q, Jia C. Development of a prognostic risk model of uveal melanoma based on N7-methylguanosine-related regulators. Hereditas 2024; 161:22. [PMID: 38987843 PMCID: PMC11234703 DOI: 10.1186/s41065-024-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Uveal melanoma (UVM) stands as the predominant type of primary intraocular malignancy among adults. The clinical significance of N7-methylguanosine (m7G), a prevalent RNA modifications, in UVM remains unclear. METHODS Primary information from 80 UVM patients were analyzed as the training set, incorporating clinical information, mutation annotations and mRNA expression obtained from The Cancer Genome Atlas (TCGA) website. The validation set was carried out using Gene Expression Omnibus (GEO) database GSE22138 and GSE84976. Kaplan-Meier and Cox regression of univariate analyses were subjected to identify m7G-related regulators as prognostic genes. RESULT A prognostic risk model comprising EIF4E2, NUDT16, SNUPN and WDR4 was established through Cox regression of LASSO. Evaluation of the model's predictability for UVM patients' prognosis by Receiver Operating Characteristic (ROC) curves in the training set, demonstrated excellent performance Area Under the Curve (AUC) > 0.75. The high-risk prognosis within the TCGA cohort exhibit a notable worse outcome. Additionally, an independent correlation between the risk score and overall survival (OS) among UVM patients were identified. External validation of this model was carried out using the validation sets (GSE22138 and GSE84976). Immune-related analysis revealed that patients with high score of m7G-related risk model exhibited elevated level of immune infiltration and immune checkpoint gene expression. CONCLUSION We have developed a risk prediction model based on four m7G-related regulators, facilitating effective estimate UVM patients' survival by clinicians. Our findings shed novel light on essential role of m7G-related regulators in UVM and suggest potential novel targets for the diagnosis, prognosis and therapy of UVM.
Collapse
Affiliation(s)
- Pingfan Wu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qian Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Peng Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
17
|
Su A, Song R, Wong J. Pan-Cancer Analysis Links Altered RNA m 7G Methyltransferase Expression to Oncogenic Pathways, Immune Cell Infiltrations and Overall Survival. Cancer Rep (Hoboken) 2024; 7:e2138. [PMID: 39041608 PMCID: PMC11264101 DOI: 10.1002/cnr2.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) modification is one of the most prevalent RNA modifications in humans. Dysregulated m7G modifications caused by aberrant expression of m7G writers contribute to cancer progression and result in worse patient survival in several human cancers. However, studies that systematically assess the frequency and clinical relevance of aberrant m7G writer expression in a pan-cancer cohort remain to be performed. AIMS This study aims to systematically investigate the molecular alteration and clinical relevance of m7G methyltransferase in human cancers. METHODS We analysed genome, transcriptome and clinical data from the Cancer Genome Atlas Research Network spanning 33 types of human cancers for aberrant changes in genes encoding m7G writers. RESULT We demonstrate that m7G writers are dysregulated in human cancers and are associated predominantly with poorer survival. By dividing patients into those with high and low m7G scores, we show that a lower m7G score is generally associated with immune infiltration and better response to immunotherapy. CONCLUSION Our analyses indicate the genetic alterations, expression patterns and clinical relevance of m7G writers across various cancers. This study provides insights into the potential utility of m7G writer expression as a cancer biomarker and proposes the possibility of targeting m7G writers for cancer therapy.
Collapse
Affiliation(s)
- Anni Su
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| | - Renhua Song
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| | - Justin J.‐L. Wong
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| |
Collapse
|
18
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Liu D, Zhou X, Zhao J. Prognostic signature and immune efficacy of m 1A-, m 5C-, m 6A-, m 7G-, and DNA methylation-related regulators in hepatocellular carcinoma. J Cancer 2024; 15:4287-4300. [PMID: 38947378 PMCID: PMC11212094 DOI: 10.7150/jca.95730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the main type of primary liver cancer, and its related death ranks third worldwide. The curative methods and progress prediction markers of HCC are not sufficient enough. Nevertheless, little progress has been made in the signature of m1A-, m5C-, m6A-, m7G-, and DNA methylation of HCC. Results: We calibrated a risk gene signature model that can be used to categorize HCC patients based on univariate, multivariate, and LASSO Cox regression analysis. This gene signature classified the patients into high- and low-risk subgroups. Patients in the high-risk group showed significantly reduced overall survival (OS) compared with patients in the low-risk group. The gene set variation analysis (GSVA), immune infiltration, and immunotherapy response were analyzed. The results demonstrated that an immunosuppressive environment was exited and the high-risk group had higher sensitivity to 5-fluorouracil, cisplatin, sorafenib, tamoxifen, and epirubicin. These results indicated personalized therapy should be taken into consideration. Conclusions: Our findings enriched our understanding of the molecular heterogeneity, tumor microenvironment (TME), and drug susceptibility of HCC. m1A-, m5C-, m6A-, m7G-, and DNA methylation-related regulators may be promising biomarkers for future research.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| |
Collapse
|
20
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Dong R, Wang C, Tang B, Cheng Y, Peng X, Yang X, Ni B, Li J. WDR4 promotes HCC pathogenesis through N 7-methylguanosine by regulating and interacting with METTL1. Cell Signal 2024; 118:111145. [PMID: 38493882 DOI: 10.1016/j.cellsig.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The N7-methylguanosine (m7G), a modification at defined internal positions within tRNAs and rRNAs, is correlated with tumor progression. Methyltransferase like 1 (METTL1)/ WD repeat domain 4 (WDR4) mediated tRNA m7G modification, which could alter many oncogenic mRNAs translation to promote progress of multiple cancer types. However, whether and how the internal mRNA m7G modification is involved in tumorigenesis remains unclear. METHODS The immunohistochemistry assay was conducted to detect the expression of WDR4 and METTL1 in hepatocellular carcinoma (HCC) and the expression of both genes whether contributes to the prognosis of the survival rate of HCC patients. Then, CCK8, colony formation assays and tumor xenograft models were conducted to determine the effects of WDR4 on HCC cells in vitro and vivo. Besides, dot blot assay, m7G-MeRIP-seq and RNA-seq analysis were conducted to determine whether WDR4 contributes to m7G modification and underlying mechanism in HCC cells. Finally, rescue and CO-IP assay were conducted to explore whether WDR4 and METTL1 proteins form a complex in Huh7 cells. RESULTS WDR4 modulates m7G modification at the internal sites of tumor-promoting mRNAs by forming the WDR4-METTL1 complex. WDR4 knockdown downregulated the expression of mRNA and protein levels of METTL1 gene and thus further modulate the formation of WDR4-METTL1 complex indirectly. METTL1 expression was markedly correlated with WDR4 expression in HCC tissues. HCC patients with high expression of both genes had a poor prognosis. CONCLUSIONS WDR4 may contribute to HCC pathogenesis by interacting with and regulating the expression of METTL1 to synergistically modulate the m7G modification of target mRNAs in tumor cells.
Collapse
Affiliation(s)
- Rui Dong
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China; Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Chuanxu Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Yayu Cheng
- Department of Gynecology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Xuehui Peng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Xiaomin Yang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
22
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
23
|
Dai D, Zhuang H, Shu M, Chen L, Long C, Wu H, Chen B. Identification of N7-methylguanosine-related miRNAs as potential biomarkers for prognosis and drug response in breast cancer. Heliyon 2024; 10:e29326. [PMID: 38628712 PMCID: PMC11017060 DOI: 10.1016/j.heliyon.2024.e29326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) prognosis. Investigating the interplay between m7G modification and miRNAs provides novel insights for assessing prognostics and drug responses in BC. Materials and methods RNA sequences (miRNA and mRNA profiles) and clinical data for BC were acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 m7G in this cohort was identified using Cox regression and LASSO. The risk score model was evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore potential pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, was examined and compared between high-risk and low-risk groups. A nomogram that combines risk scores and clinical factors was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell relationships in the tumor microenvironment. Additionally, drug susceptibility was compared between risk groups. Results Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p = 1.3e-6). Multiple regression identified the risk score as a significant independent prognostic factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728-0.843) was constructed. In immune analysis, low-risk patients exhibited heightened immune function and increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. Conclusion This study systematically analyzed m7G-related miRNAs and revealed their regulatory mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC patients, facilitating prognostic assessments. These findings can also assist in predicting treatment responses and guiding medication selection.
Collapse
Affiliation(s)
- Danian Dai
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mao Shu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Lezi Chen
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Chen Long
- Department of Pathology, Yueyang Maternal Child Health-Care Hospital, Yueyang, 414000, Hunan, China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
24
|
Nai F, Flores Espinoza MP, Invernizzi A, Vargas-Rosales PA, Bobileva O, Herok M, Caflisch A. Small-Molecule Inhibitors of the m7G-RNA Writer METTL1. ACS BIO & MED CHEM AU 2024; 4:100-110. [PMID: 38645929 PMCID: PMC11027120 DOI: 10.1021/acsbiomedchemau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 04/23/2024]
Abstract
We discovered the first inhibitors of the m7G-RNA writer METTL1 by high-throughput docking and an enzymatic assay based on luminescence. Eleven compounds, which belong to three different chemotypes, show inhibitory activity in the range 40-300 μM. Two adenine derivatives identified by docking have very favorable ligand efficiency of 0.34 and 0.31 kcal/mol per non-hydrogen atom, respectively. Molecular dynamics simulations provide evidence that the inhibitors compete with the binding of the cosubstrate S-adenosyl methionine to METTL1. We also present a soakable crystal form that was used to determine the structure of the complex of METTL1 with sinefungin at a resolution of 1.85 Å.
Collapse
Affiliation(s)
- Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Annalisa Invernizzi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Marcin Herok
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
26
|
Wu X, Tang J, Cheng B. Oral squamous cell carcinoma gene patterns connected with RNA methylation for prognostic prediction. Oral Dis 2024; 30:408-421. [PMID: 35934835 DOI: 10.1111/odi.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To determine whether m6A/m1A/m5C/m7G/m6Am/Ψ-related genes influence the prognosis of a patient with oral squamous cell carcinoma. MATERIALS AND METHODS We investigated the changes in regulatory genes using publicly available data from The Cancer Genome Atlas. Consensus clustering by RNA methylation-related regulators was used to describe oral squamous cell carcinomas (OSCCs). Then, we developed the prediction model. The tumor microenvironment was investigated using ESTIMATE. Gene set enrichment analysis was used to determine whether pathways or cell types were enriched in different groups. The association between the model and immune-related risk scores was investigated using correlation analysis. RESULTS We found 22 gene signatures in this analysis and then developed a predictive model that reveals the genes that are highly connected to the overall survival of OSCC patients. The survival and death rates were substantially different in the two groups (high and low risk) classified by the risk scores. The validation cohort verified the phenotypic diversity and prognostic effects of these genes. CONCLUSION Our data reveal that immune cell infiltration, genetic mutation, and survival potential in OSCC patients are linked to m6A/m1A/m5C/m7G/m6Am/Ψ-related genes, and we constructed a dependable prognostic model for OSCC patients.
Collapse
Affiliation(s)
- Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Zhao P, Xia L, Chen D, Xu W, Guo H, Xu Y, Yan B, Wu X, Li Y, Zhang Y, Zhang X. METTL1 mediated tRNA m 7G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol 2024; 13:8. [PMID: 38268051 PMCID: PMC10807064 DOI: 10.1186/s40164-024-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m7G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined. METHODS METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements. RESULTS METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m7G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells. CONCLUSIONS Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.
Collapse
Affiliation(s)
- Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuxia Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
| |
Collapse
|
28
|
Ohira T, Suzuki T. Transfer RNA modifications and cellular thermotolerance. Mol Cell 2024; 84:94-106. [PMID: 38181765 DOI: 10.1016/j.molcel.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
RNA molecules are modified post-transcriptionally to acquire their diverse functions. Transfer RNA (tRNA) has the widest variety and largest numbers of RNA modifications. tRNA modifications are pivotal for decoding the genetic code and stabilizing the tertiary structure of tRNA molecules. Alternation of tRNA modifications directly modulates the structure and function of tRNAs and regulates gene expression. Notably, thermophilic organisms exhibit characteristic tRNA modifications that are dynamically regulated in response to varying growth temperatures, thereby bolstering fitness in extreme environments. Here, we review the history and latest findings regarding the functions and biogenesis of several tRNA modifications that contribute to the cellular thermotolerance of thermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
29
|
Li J, Zheng L, Song L, Dong Z, Bai W, Qi L. Identification and validation of N 7 -methylguanosine-associated gene NCBP1 as prognostic and immune-associated biomarkers in breast cancer patients. J Cell Mol Med 2024; 28:e18067. [PMID: 38071502 PMCID: PMC10826432 DOI: 10.1111/jcmm.18067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
We intend to evaluate the importance of N7 -methylguanosine (m7G) for the prognosis of breast cancer (BC). We gained 29 m7G-related genes from the published literature and among them, 16 m7G-related genes were found to have differential expression. Five differentially expressed genes (CYFIP1, EIF4E, EIF4E3, NCBP1 and WDR4) were linked to overall survival. This suggests that m7G-related genes might be prognostic or therapeutic targets for BC patients. We put the five genes to LASSO regression analysis to create a four-gene signature, including EIF4E, EIF4E3, WDR4 and NCBP1, that divides samples into two risky groups. Survival was drastically worsened in a high-risk group (p < 0.001). The signature's predictive capacity was demonstrated using ROC (10-year AUC 0.689; 10-year AUC 0.615; 3-year AUC 0.602). We found that immune status was significantly different between the two risk groups. In particular, NCBP1 also has a poor prognosis, with higher diagnostic value in ROC. NCBP1 also has different immune states according to its high or low expression. Meanwhile, knockdown of NCBP1 suppresses BC malignancy in vitro. Therefore, m7G RNA regulators are crucial participants in BC and four-gene mRNA levels are important predictors of prognosis. NCBP1 plays a critical target of m7G mechanism in BC.
Collapse
Affiliation(s)
- Jianrong Li
- Department of General Surgery SciencesShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Lin Zheng
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Liying Song
- Thyroid Surgery DepartmentFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Zhuanxia Dong
- GastroenterologyShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Wenqi Bai
- Department of General Surgery SciencesShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Liqiang Qi
- Department of Breast Surgery, National Cancer Center/National Cancer Clinical Medical Research Center/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
30
|
Yue Y, Tao J, An D, Shi L. Three molecular subtypes and a five-gene signature for hepatocellular carcinoma based on m7G-related classification. J Gene Med 2024; 26:e3611. [PMID: 37847055 DOI: 10.1002/jgm.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The current research investigated the heterogeneity of hepatocellular carcinoma (HCC) based on the expression of N7-methylguanosine (m7G)-related genes as a classification model and developed a risk model predictive of HCC prognosis, key pathological behaviors and molecular events of HCC. METHODS The RNA sequencing data of HCC were extracted from The Cancer Genome Atlas (TCGA)-live cancer (LIHC) database, hepatocellular carcinoman database (HCCDB) and Gene Expression Omnibus database, respectively. According to the expression level of 29 m7G-related genes, a consensus clustering analysis was conducted. The least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression algorithm were applied to create a risk prediction model based on normalized expression of five characteristic genes weighted by coefficients. Tumor microenvironment (TME) analysis was performed using the MCP-Counter, TIMER, CIBERSORT and ESTIMATE algorithms. The Tumor Immune Dysfunction and Exclusion algorithm was applied to assess the responses to immunotherapy in different clusters and risk groups. In addition, patient sensitivity to common chemotherapeutic drugs was determined by the biochemical half-maximal inhibitory concentration using the R package pRRophetic. RESULTS Three molecular subtypes of HCC were defined based on the expression level of m7G-associated genes, each of which had its specific survival rate, genomic variation status, TME status and immunotherapy response. In addition, drug sensitivity analysis showed that the C1 subtype was more sensitive to a number of conventional oncolytic drugs (including paclitaxel, imatinib, CGP-082996, pyrimethamine, salubrinal and vinorelbine). The current five-gene risk prediction model accurately predicted HCC prognosis and revealed the degree of somatic mutations, immune microenvironment status and specific biological events. CONCLUSION In this study, three heterogeneous molecular subtypes of HCC were defined based on m7G-related genes as a classification model, and a five-gene risk prediction model was created for predicting HCC prognosis, providing a potential assessment tool for understanding the genomic variation, immune microenvironment status and key pathological mechanisms during HCC development.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Cao C, Luo Z, Zhang H, Yao S, Lu H, Zheng K, Wang Y, Zou M, Qin W, Xiong H, Yuan X, Wang Y, Pinheiro RN, Peixoto RD, Zou Y, Xiong H. A methylation-related signature for predicting prognosis and sensitivity to first-line therapies in gastric cancer. J Gastrointest Oncol 2023; 14:2354-2372. [PMID: 38196539 PMCID: PMC10772674 DOI: 10.21037/jgo-23-770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Background Methylation modification patterns play a crucial role in human cancer progression, especially in gastrointestinal cancers. We aimed to use methylation regulators to classify patients with gastric adenocarcinoma and build a model to predict prognosis, promoting the application of precision medicine. Methods We obtained RNA sequencing data and clinical data from The Cancer Genome Atlas (TCGA) database (n=335) and Gene Expression Omnibus (GEO) database (n=865). Unsupervised consensus clustering was used to identify subtypes of gastric adenocarcinoma. We performed functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular feature analysis to determine the clinical application for different subtypes. The univariate Cox regression analysis and the LASSO regression analysis were subsequently used to identify prognosis-related methylation regulators and construct a risk model. Results Through unsupervised consensus clustering, patients were divided into two subtypes (cluster A and cluster B) with different clinical outcomes. Cluster B included patients with a better prognosis outcome and who were more likely to respond to immunotherapy. We then successfully built a predictive model and found five methylation-related genes (CHAF1A, CPNE8, PHLDA3, SPARC, and EHF) potentially significant to the prognosis of patients. The 1-, 3-, and 5-year areas under the curve of the risk model were 0.712, 0.696, and 0.759, respectively. The risk score was an independent prognostic factor and had the highest concordance index among common clinical indicators. Meanwhile, the tumor microenvironment, sensitivity of chemotherapeutic drugs, molecular features, and oncogenic dedifferentiation differed significantly across the risk groups and subtypes. Conclusions We classified patients with gastric adenocarcinoma based on methylation regulators, which has positive implications for first-line clinical treatment. The prognostic model could predict the prognosis of patients and help to promote the development of precision medicine.
Collapse
Affiliation(s)
- Chenlin Cao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Luo
- Division of Breast and Thyroid Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Renata D’Alpino Peixoto
- Department of Gastrointestinal Medical Oncology, Oncoclinicas, Av. Brigadeiro Faria Lima, São Paulo, Brazil
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Liu Y, Zhu E, Lei Y, Luo A, Yan Y, Cai M, Liu S, Huang Y, Guan H, Zhong M, Li W, Lin L, Hultstöm M, Lai E, Zheng Z, Liu X, Tang C. Diagnostic Values of METTL1-Related Genes and Immune Characteristics in Systemic Lupus Erythematosus. J Inflamm Res 2023; 16:5367-5383. [PMID: 38026241 PMCID: PMC10661937 DOI: 10.2147/jir.s431628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Methyltransferase like 1 (METTL1) regulates epitranscriptomes via the m7G modification in mammalian mRNA and microRNA. Systemic lupus erythematosus (SLE) is caused by abnormal immune reactivity and has diverse clinical manifestations. RNA methylation as a mechanism to regulate gene expression is widely implicated in immune regulation. However, the role of m7G in immune response of SLE has not been extensively studied. Patients and Methods Expression of METTL1 was identified in the public dataset GSE122459 and validated in an independent cohort of SLE patients. We investigated the association between METTL1-expression and clinical manifestations of SLE. Subsequently, differentially expressed genes (DEG) that were correlated with METTL1-expression in GSE122459 were used for functional enrichment analysis. The correlation between infiltrating immune cells and METTL1, as well as candidate biomarkers identified to be correlated with either METTL1 or immune cell infiltration were assessed by single-sample GSEA. Potential mechanisms were explored with Gene ontology and KEGG pathway enrichment. Diagnostic performances of candidate biomarkers in SLE were analyzed. Results The mRNA and protein expression of METTL1 in SLE patients were significantly decreased in both datasets. METTL1-coexpressed DEGs were enriched in several key immune-related pathways. Activated CD8 T cells, activated CD4 T cells, memory B cells and type 2 helper T cells were different between patients with high and low METTL1 expression. Further, activated CD8 T-cells, activated CD4 T-cells, memory B-cells were correlated with METTL1. The genes of LAMP3, CD83, PDCD1LG2, IGKVD3D-20, IGKV5-2, IGKV2D-30, IGLV3-19 and IGLV4-60 were identified as candidate targets that were correlated with immune cell proportion. Moreover, LAMP3, CD83, and PDCD1LG2 expression were of diagnostic value in SLE as indicated by ROC analysis. Conclusion Our findings suggested that METTL1 and its candidate targets LAMP3, CD83, PDCD1LG2 may be used for diagnosing SLE and could be explored for developing targeted molecular therapy for SLE.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yan Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510623, People’s Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Michael Hultstöm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Unit for Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
33
|
Zhong S, Chen S, Lin H, Luo Y, He J. Selection of M7G-related lncRNAs in kidney renal clear cell carcinoma and their putative diagnostic and prognostic role. BMC Urol 2023; 23:186. [PMID: 37968670 PMCID: PMC10652602 DOI: 10.1186/s12894-023-01357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is a common malignant tumor of the urinary system. This study aims to develop new biomarkers for KIRC and explore the impact of biomarkers on the immunotherapeutic efficacy for KIRC, providing a theoretical basis for the treatment of KIRC patients. METHODS Transcriptome data for KIRC was obtained from the The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Weighted gene co-expression network analysis identified KIRC-related modules of long noncoding RNAs (lncRNAs). Intersection analysis was performed differentially expressed lncRNAs between KIRC and normal control samples, and lncRNAs associated with N(7)-methylguanosine (m7G), resulting in differentially expressed m7G-associated lncRNAs in KIRC patients (DE-m7G-lncRNAs). Machine Learning was employed to select biomarkers for KIRC. The prognostic value of biomarkers and clinical features was evaluated using Kaplan-Meier (K-M) survival analysis, univariate and multivariate Cox regression analysis. A nomogram was constructed based on biomarkers and clinical features, and its efficacy was evaluated using calibration curves and decision curves. Functional enrichment analysis was performed to investigate the functional enrichment of biomarkers. Correlation analysis was conducted to explore the relationship between biomarkers and immune cell infiltration levels and common immune checkpoint in KIRC samples. RESULTS By intersecting 575 KIRC-related module lncRNAs, 1773 differentially expressed lncRNAs, and 62 m7G-related lncRNAs, we identified 42 DE-m7G-lncRNAs. Using XGBoost and Boruta algorithms, 8 biomarkers for KIRC were selected. Kaplan-Meier survival analysis showed significant survival differences in KIRC patients with high and low expression of the PTCSC3 and RP11-321G12.1. Univariate and multivariate Cox regression analyses showed that AP000696.2, PTCSC3 and clinical characteristics were independent prognostic factors for patients with KIRC. A nomogram based on these prognostic factors accurately predicted the prognosis of KIRC patients. The biomarkers showed associations with clinical features of KIRC patients, mainly localized in the cytoplasm and related to cytokine-mediated immune response. Furthermore, immune feature analysis demonstrated a significant decrease in immune cell infiltration levels in KIRC samples compared to normal samples, with a negative correlation observed between the biomarkers and most differentially infiltrating immune cells and common immune checkpoints. CONCLUSION In summary, this study discovered eight prognostic biomarkers associated with KIRC patients. These biomarkers showed significant correlations with clinical features, immune cell infiltration, and immune checkpoint expression in KIRC patients, laying a theoretical foundation for the diagnosis and treatment of KIRC.
Collapse
Affiliation(s)
- Shuangze Zhong
- Guangdong Medical University, Zhanjiang City, 524023, Guangdong Province, China
| | - Shangjin Chen
- Guangdong Medical University, Zhanjiang City, 524023, Guangdong Province, China
| | - Hansheng Lin
- Guangdong Medical University, Zhanjiang City, 524023, Guangdong Province, China
- Department of Urology, Yangjiang People's Hospital affiliated to Guangdong Medical University, Yangjiang, 42 Dongshan Road, Jiangcheng District, Guangdong Province, 529500, China
| | - Yuancheng Luo
- Guangdong Medical University, Zhanjiang City, 524023, Guangdong Province, China
| | - Jingwei He
- Department of Urology, Yangjiang People's Hospital affiliated to Guangdong Medical University, Yangjiang, 42 Dongshan Road, Jiangcheng District, Guangdong Province, 529500, China.
| |
Collapse
|
34
|
Liu T, Wang Y, Li Z, Sun L, Yang K, Chen J, Han X, Qi L, Zhou X, Wang P. Establishment of a new molecular subtyping and prognostic signature with m6A/m5C/m1A/m7G regulatory genes for hepatocellular carcinoma. Heliyon 2023; 9:e21285. [PMID: 38027812 PMCID: PMC10660009 DOI: 10.1016/j.heliyon.2023.e21285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/19/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background RNA modification, including m6A, m5C, m1A, and m7G, participated in tumor progress. Therefore, the purpose of the present study was to explore the role of m6A/m5C/m1A/m7G regulatory genes in the prognosis and tumor microenvironment (TME) for hepatocellular carcinoma (HCC). Methods 71 m6A/m5C/m1A/m7G regulatory genes expression for HCC was detected, differentially expressed genes were screened, and molecular forms were classified by unsupervised consensus clustering. Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) analysis were applied to establish a prognostic signature. Time-dependent receiver operating characteristic (ROC) curves were evaluated for clinical effectiveness and accuracy of the prognostic hazard model. In cluster subtypes and risk models, the differences in prognosis, immune cell infiltration, immune checkpoint, immunotherapy, and drug sensitivity between different subtypes were evaluated. Results HCC patients were classified into two clusters (cluster 1 and cluster 2) according to the expression of 71 m6A/m5C/m1A/m7G regulatory genes. Cluster 1 had a poor prognosis and different immune cell infiltration. Cluster 1 had higher immune checkpoint expression and TIDE score than cluster 2. Subsequently, we construct a five-gene prognostic model of m6A/m5C/m1A/m7G regulatory genes (YTHDF2, YTHDF1,YBX1, TRMT61A, TRMT10C). The Kaplan-Meier and ROC curve analysis showed that the prognostic signature exhibited good predictability. The risk score was considered an independent poor prognostic index. The high-risk group had higher immune checkpoint expression and higher TIDE scores. 5-Fluorouracil, docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, sorafenib, and vinblastine were more suitable for high-risk patients. ECM receptor interaction, cell cycle, and Leishmania infection were enriched in the high-risk group. Conclusion The clustering subgroups and prognostic model of m6A/m5C/m1A/m7G regulatory genes were linked with bad prognosis and TME for HCC, and had the potential to be a novel tool to evaluate the outcomes of HCC patients.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Yang Wang
- Department of General Surgical Department, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People’s Republic of China
| | - Zhizhao Li
- Department of Cardiovasology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Jiamin Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Xiaoyi Han
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Liming Qi
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| |
Collapse
|
35
|
McGuffey JC, Jackson-Litteken CD, Di Venanzio G, Zimmer AA, Lewis JM, Distel JS, Kim KQ, Zaher HS, Alfonzo J, Scott NE, Feldman MF. The tRNA methyltransferase TrmB is critical for Acinetobacter baumannii stress responses and pulmonary infection. mBio 2023; 14:e0141623. [PMID: 37589464 PMCID: PMC10653896 DOI: 10.1128/mbio.01416-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
IMPORTANCE As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aubree A. Zimmer
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jessica M. Lewis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Juan Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Wang Y, Liu Y, Wang R, Cao F, Guan Y, Chen Y, An B, Qin S, Yao S. Establishment of a prognostic model toward lung squamous cell carcinoma based on m 7G-related genes in the cancer genome atlas. Physiol Genomics 2023; 55:427-439. [PMID: 37575065 PMCID: PMC10642926 DOI: 10.1152/physiolgenomics.00149.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a non-small cell lung cancer with a poor prognosis owing to late diagnosis. New molecular markers are urgently needed to improve the diagnosis and prognosis of LUSC. 7-Methylguanosine (m7G) modifications, a tRNA modification, are common in eubacteria, eukaryotes, and a few archaea. These modifications promote the turnover and stability of some mRNAs to prevent mRNA decay, improve translation efficiency, and reduce ribosomal pausing but are associated with poor survival in human cancer cells. However, expression of m7G-related genes in LUSC and their association with prognosis remain unclear. In the present study, we identified nine differentially expressed genes related to prognosis by comparing the expression profiles of tumor tissues (502 LUSC reports) with normal tissues (49 adjacent nontumor lung tissue reports). The genes included six upregulated genes (KLK7, LCE3E, AREG, KLK6, ZBED2, and MAPK4) and three downregulated genes (ADH1C, NTS, and ERLIN2). Based on these nine genes, patients with LUSC were classified into low- and high-risk groups to analyze the trends in prognosis. We found that the nine m7G-related genes play important roles in immune regulation, hormone regulation, and drug sensitivity through pathways including antigen processing and presentation, adherent plaques, extracellular matrix receptor interactions, drug metabolism of cytochrome P-450, and metabolism of cytochrome P-450 to xenobiotics; the functions of these genes are likely accomplished in part by m6A modifications. The effect of m7G-related genes on the diagnosis and prognosis of LUSC was further indicated by population analysis.NEW & NOTEWORTHY Based on the differential expression of 7-methylguanosine (m7G) modification-associated genes between normal and lung squamous cell carcinoma (LUSC) tissues, and considering the performance of our m7G-related gene risk profiles as independent risk factors in predicting overall survival, we conclude that m7G modification is closely linked to the development of LUSC. In addition, this study offers a new genetic marker for predicting the prognosis of patients with LUSC and presents a crucial theoretical foundation for future investigations on the relationship between m7G modification-related genes, immunity, and drug sensitivity in LUSC.
Collapse
Affiliation(s)
- Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yimin Liu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Rui Wang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yulu Chen
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Binbin An
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Sisi Qin
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
37
|
Yao Y, Lv J, Wang G, Hong X. Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18318-18344. [PMID: 38052560 DOI: 10.3934/mbe.2023814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Multiple types of RNA modifications are associated with the prognosis of hepatocellular carcinoma (HCC) patients. However, the overall mediating effect of RNA modifications on the tumor microenvironment (TME) and the prognosis of patients with HCC is unclear. METHODS Thoroughly analyze the TME, biological processes, immune infiltration and patient prognosis based on RNA modification patterns and gene patterns. Construct a prognostic model (RNA modification score, RNAM-S) to predict the overall survival (OS) in HCC patients. Analyze the immune status, cancer stem cell (CSC), mutations and drug sensitivity of HCC patients in both the high and low RNAM-S groups. Verify the expression levels of the four characteristic genes of the prognostic RNAM-S using in vitro cell experiments. RESULTS Two modification patterns and two gene patterns were identified in this study. Both the high-expression modification pattern and the gene pattern exhibited worse OS. A prognostic RNAM-S model was constructed based on four featured genes (KIF20A, NR1I2, NR2F1 and PLOD2). Cellular experiments suggested significant dysregulation of the expression levels of these four genes. In addition, validation of the RNAM-S model using each data set showed good predictive performance of the model. The two groups of HCC patients (high and low RNAM-S groups) exhibited significant differences in immune status, CSC, mutation and drug sensitivity. CONCLUSION The findings of the study demonstrate the clinical value of RNA modifications, which provide new insights into the individualized treatment for patients with HCC.
Collapse
Affiliation(s)
- Yuanqian Yao
- Guangxi University of Chinese medicine, NanNing 530000, China
| | - Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guangyao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaohua Hong
- Guangxi University of Chinese medicine, NanNing 530000, China
| |
Collapse
|
38
|
Zhang X, Zhu WY, Shen SY, Shen JH, Chen XD. Biological roles of RNA m7G modification and its implications in cancer. Biol Direct 2023; 18:58. [PMID: 37710294 PMCID: PMC10500781 DOI: 10.1186/s13062-023-00414-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
M7G modification, known as one of the common post-transcriptional modifications of RNA, is present in many different types of RNAs. With the accurate identification of m7G modifications within RNAs, their functional roles in the regulation of gene expression and different physiological functions have been revealed. In addition, there is growing evidence that m7G modifications are crucial in the emergence of cancer. Here, we review the most recent findings regarding the detection techniques, distribution, biological functions and Regulators of m7G. We also summarize the connections between m7G modifications and cancer development, drug resistance, and tumor microenvironment as well as we discuss the research's future directions and trends.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wen-Yan Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shu-Yi Shen
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Hao Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiao-Dong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
39
|
Zhang Y, Wang X, Zhang C, Yi H. The dysregulation of lncRNAs by epigenetic factors in human pathologies. Drug Discov Today 2023; 28:103664. [PMID: 37348827 DOI: 10.1016/j.drudis.2023.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) contributes to numerous human diseases, including cancers and autoimmune diseases (ADs). Given the importance of lncRNAs in disease initiation and progression, a deeper understanding of their complex regulatory network is required to facilitate their use as therapeutic targets for ADs. In this review, we summarize how lncRNAs are dysregulated in pathological states by epigenetic factors, including RNA-binding proteins, chemical modifications (N6-methyladenosine, 5-methylcytosine, 7-methylguanosine, adenosine-to-inosine editing, microRNA, alternative splicing, DNA methylation, and histone modification). Moreover, the roles of lncRNA epigenetic regulators in immune response and ADs are discussed, providing new insights into the complicated epigenetic factor-lncRNA network, thus, laying a theoretical foundation for future research and clinical application of lncRNAs.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China; Department of Echocardiography, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaocong Wang
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhang
- Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China.
| |
Collapse
|
40
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
Peng YL, Dong YF, Guo LL, Li MY, Liao H, Li RS. Identification and validation of a m7G-related lncRNA signature for predicting the prognosis and therapy response in hepatocellular carcinoma. PLoS One 2023; 18:e0289552. [PMID: 37535570 PMCID: PMC10399872 DOI: 10.1371/journal.pone.0289552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) is one of the most common RNA posttranscriptional modifications; however, its potential role in hepatocellular carcinoma (HCC) remains unknown. We developed a prediction signature based on m7G-related long noncoding RNAs (lncRNAs) to predict HCC prognosis and provide a reference for immunotherapy and chemotherapy. METHODS RNA-seq data from The Cancer Genome Atlas (TCGA) database and relevant clinical data were used. Univariate and multivariate Cox regression analyses were conducted to identify m7G-related lncRNAs with prognostic value to build a predictive signature. We evaluated the prognostic value and clinical relevance of this signature and explored the correlation between the predictive signature and the chemotherapy treatment response of HCC. Moreover, an in vitro study to validate the function of CASC19 was performed. RESULTS Six m7G-related lncRNAs were identified to create a signature. This signature was considered an independent risk factor for the prognosis of patients with HCC. TIDE analyses showed that the high-risk group might be more sensitive to immunotherapy. ssGSEA indicated that the predictive signature was strongly related to the immune activities of HCC. HCC in high-risk patients was more sensitive to the common chemotherapy drugs bleomycin, doxorubicin, gemcitabine, and lenalidomide. In vitro knockdown of CASC19 inhibited the proliferation, migration and invasion of HCC cells. CONCLUSION We established a 6 m7G-related lncRNA signature that may assist in predicting the prognosis and response to chemotherapy and immunotherapy of HCC.
Collapse
Affiliation(s)
- Yue-Ling Peng
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Ya-Fang Dong
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Li-Li Guo
- Provincial Key Laboratory of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Mu-Ye Li
- Department of Ocular Fundus Diseases, Shanxi Eye Hospital, Shanxi Medical University, Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
42
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
43
|
Deng K, Li JX, Yang R, Mou ZQ, Yang L, Yang QQ. Identification and validation of a novel prognostic model for gastric cancer based on m7G-related genes. Transl Cancer Res 2023; 12:1836-1851. [PMID: 37588749 PMCID: PMC10425669 DOI: 10.21037/tcr-22-2614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/06/2023] [Indexed: 08/18/2023]
Abstract
Background The role of N7-methyladenosine (m7G)-related genes in the progression and prognosis of gastric cancer (GC) remains unclear. This study aimed to explore prognostic biomarkers for GC based on m7G methylation regulators and to construct a prognostic risk model. Methods RNA sequencing profiles with corresponding clinicopathological information associated with GC of which the histological type was stomach adenocarcinoma (STAD) were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. A total of 29 m7G regulators were extracted from previous studies. According to the expression similarity of m7G regulators, the GC samples obtained from TCGA were further classified into 2 clusters demonstrating different overall survival (OS) rates and genetic heterogeneity, and the differentially expressed genes (DEGs) between these 2 clusters were defined as m7G-related genes. Univariate regression analysis and regression analysis were then used to obtain the prognostic m7G-related genes. The samples in TCGA and Genotype-Tissue Expression (GTEx) were used to verify the differential expression and prognostic value of these m7G-related genes contained in the prognostic model. Subsequently, the risk score was combined with other prognostic factors to develop a nomogram. The predictive ability of the nomogram was evaluated by the standard receiver operating characteristic (ROC) curve. Gene set enrichment analysis (GSEA) was used to identify activation pathways in both groups. Finally, the association between the prognostic model and the immune characteristics of GC were appraised. Results A prognostic model consisting of 11 m7G-related genes was constructed. GC patients in the high-risk group were shown to have a poor prognosis and this result was further demonstrated in each group. The risk model can be applied for patients with different clinical features. The results of GSEA showed that cell adhesion, cell junction, and focal adhesion were highly enriched in the high-risk group. In addition, we found that the expression of programmed cell death ligand 1 (PD-L1) was significantly elevated in the low-risk group, whereas programmed cell death ligand 2 (PD-L2) and tumor necrosis factor receptor superfamily member 4 (TNFRSF4) were overexpressed in the high-risk group. Conclusions We successfully built and verified a m7G relevant prognostic model for predicting prognosis and providing a new train of thought for improving the treatment of GC.
Collapse
Affiliation(s)
- Kun Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Xin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhi-Qiang Mou
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Qiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Chen C, Chao Y, Zhang C, Hu W, Huang Y, Lv Y, Liu B, Ji D, Liu M, Yang B, Jiang L, Liang Y, Zhang H, Yuan G, Ying X, Ji W. TROP2 translation mediated by dual m 6A/m 7G RNA modifications promotes bladder cancer development. Cancer Lett 2023; 566:216246. [PMID: 37268280 DOI: 10.1016/j.canlet.2023.216246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
RNA modifications, including adenine methylation (m6A) of mRNA and guanine methylation (m7G) of tRNA, are crucial for the biological function of RNA. However, the mechanism underlying the translation of specific genes synergistically mediated by dual m6A/m7G RNA modifications in bladder cancer (BCa) remains unclear. We demonstrated that m6A methyltransferase METTL3-mediated programmable m6A modification of oncogene trophoblast cell surface protein 2 (TROP2) mRNA promoted its translation during malignant transformation of bladder epithelial cells. m7G methyltransferase METTL1 enhanced TROP2 translation by mediating m7G modification of certain tRNAs. TROP2 protein inhibition decreased the proliferation and invasion of BCa cells in vitro and in vivo. Moreover, synergistical knockout of METTL3/METTL1 inhibited BCa cell proliferation, migration, and invasion; however, TROP2 overexpression partially abrogated its effect. Furthermore, TROP2 expression was significantly positively correlated with the expression levels of METTL3 and METTL1 in BCa patients. Overall, our results revealed that METTL3/METTL1-mediated dual m6A/m7G RNA modifications enhanced TROP2 translation and promoted BCa development, indicating a novel RNA epigenetic mechanism in BCa.
Collapse
Affiliation(s)
- Cong Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengcheng Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenyu Hu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yifan Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Bixia Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baotong Yang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Lujing Jiang
- Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Yuan
- Private Medical Service & Healthcare Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
45
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
46
|
Jin X, Guan Z, Hu N, He C, Yin P, Gong Z, Zhang D. Structural insight into how WDR4 promotes the tRNA N7-methylguanosine methyltransferase activity of METTL1. Cell Discov 2023; 9:65. [PMID: 37369656 PMCID: PMC10300002 DOI: 10.1038/s41421-023-00562-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Xiaohuan Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Na Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunjie He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Ali Z, Kaur S, Kukhta T, Abu-Saleh AAAA, Jhunjhunwala A, Mitra A, Trant JF, Sharma P. Structural Mapping of the Base Stacks Containing Post-transcriptionally Modified Bases in RNA. J Phys Chem B 2023. [PMID: 37369074 DOI: 10.1021/acs.jpcb.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Post-transcriptionally modified bases play vital roles in many biochemical processes involving RNA. Analysis of the non-covalent interactions associated with these bases in RNA is crucial for providing a more complete understanding of the RNA structure and function; however, the characterization of these interactions remains understudied. To address this limitation, we present a comprehensive analysis of base stacks involving all crystallographic occurrences of the most biologically relevant modified bases in a large dataset of high-resolution RNA crystal structures. This is accompanied by a geometrical classification of the stacking contacts using our established tools. Coupled with quantum chemical calculations and an analysis of the specific structural context of these stacks, this provides a map of the stacking conformations available to modified bases in RNA. Overall, our analysis is expected to facilitate structural research on altered RNA bases.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sarabjeet Kaur
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), Leuven (Arenberg) Celestijnenlaan 200f─Box 2461, 3001 Leuven, Belgium
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Abd Al-Aziz A Abu-Saleh
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
48
|
Huang Q, Mo J, Yang H, Ji Y, Huang R, Liu Y, Pan Y. Analysis of m7G-Related signatures in the tumour immune microenvironment and identification of clinical prognostic regulators in breast cancer. BMC Cancer 2023; 23:583. [PMID: 37353728 DOI: 10.1186/s12885-023-11012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Breast cancer is a malignant tumour that seriously threatens women's life and health and exhibits high inter-individual heterogeneity, emphasising the need for more in-depth research on its pathogenesis. While internal 7-methylguanosine (m7G) modifications affect RNA processing and function and are believed to be involved in human diseases, little is currently known about the role of m7G modification in breast cancer. METHODS AND RESULTS We elucidated the expression, copy number variation incidence and prognostic value of 24 m7G-related genes (m7GRGs) in breast cancer. Subsequently, based on the expression of these 24 m7GRGs, consensus clustering was used to divide tumour samples from the TCGA-BRCA dataset into four subtypes based on significant differences in their immune cell infiltration and stromal scores. Differentially expressed genes between subtypes were mainly enriched in immune-related pathways such as 'Ribosome', 'TNF signalling pathway' and 'Salmonella infection'. Support vector machines and multivariate Cox regression analysis were applied based on these 24 m7GRGs, and four m7GRGs-AGO2, EIF4E3, DPCS and EIF4E-were identified for constructing the prediction model. An ROC curve indicated that a nomogram model based on the risk model and clinical factors had strong ability to predict the prognosis of breast cancer. The prognoses of patients in the high- and low-TMB groups were significantly different (p = 0.03). Moreover, the four-gene signature was able to predict the response to chemotherapy. CONCLUSIONS In conclusion, we identified four different subtypes of breast cancer with significant differences in the immune microenvironment and pathways. We elucidated prognostic biomarkers associated with breast cancer and constructed a prognostic model involving four m7GRGs. In addition, we predicted the candidate drugs related to breast cancer based on the prognosis model.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huawei Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Yinan Ji
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Rong Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Yan Liu
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China.
- Department of BreastBone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530000, China.
| | - You Pan
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China.
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China.
| |
Collapse
|
49
|
Han WY, Wang J, Zhao J, Zheng YM, Chai XQ, Gao C, Cai JB, Ke AW, Fan J, Gao PT, Sun HX. WDR4/TRIM28 is a novel molecular target linked to lenvatinib resistance that helps retain the stem characteristics in hepatocellular carcinomas. Cancer Lett 2023:216259. [PMID: 37279851 DOI: 10.1016/j.canlet.2023.216259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. Lenvatinib is the first-line therapy for HCC but has only limited clinical benefit. Here, we explored the role and mechanism of the WD repeat domain 4 (WDR4) in lenvatinib resistance to improve clinical benefit. We found that lenvatinib-resistant HCC tissues/cells exhibited increased the N7-methylguanosine (m7G) modification and WDR4 expression. By a gain/loss of function experiment, we showed that WDR4 promoted HCC lenvatinib resistance and tumor progress both in vitro and in vivo. By proteomics analysis and RNA immunoprecipitation PCR, we found that tripartite motif protein 28 (trim28) was an important WDR4 target gene. WDR4 promoted TRIM28 expression, further affected target genes expression, and thus increased cell-acquired stemness and lenvatinib resistance. Clinical tissue data showed that TRIM28 expression was correlated with WDR4 levels, and the expression of both was positively correlated with poor prognosis. Our study provides new insight into the role of WDR4, suggesting a potential therapeutic target to enhance the lenvatinib sensitivity of HCC.
Collapse
Affiliation(s)
- Wei-Yu Han
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yi-Min Zheng
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Endoscopy Center and Endoscopy Research Institute, Fudan University, Shanghai, China.
| | - Hai-Xiang Sun
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|