1
|
Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res 2024; 17:881-898. [PMID: 38351985 PMCID: PMC10863468 DOI: 10.2147/jir.s425978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Chronic recurrent skin inflammation and severe itching in patients with atopic dermatitis (AD) significantly impair their quality of life. The H4 histamine receptor plays a key role in histamine-induced itching. During the skin inflammation associated with AD, pro-inflammatory mediators (interleukins, cytokines) are released from neurons. Ultimately, a cascade of reactions leads to the activation and sensitization of transient receptor potential channels (TRP), which exacerbate the inflammation and itching associated with AD. Osthole (OST) is a natural coumarin with a proven versatile pharmacological effect: anti-cancer, anti-inflammatory and immunomodulatory. However, the molecular mechanism of OST in relieving inflammation in histamine-mediated itching is not yet clear. Purpose In the studies presented, the possible effect of the OST action on the inhibition of the gene expression of the histamine H4 receptor and the key genes of the TRP channels as well as on the concentration of proinflammatory interleukins was analyzed. Methods Inflammation was induced in a 3D skin model and a keratinocyte cell line Normal Human Epidermal Keratinocytes (NHEK) identical to that of AD, and then OST was administered at various doses. The concentrations of IL-4/-13 were determined by ELISA. RNA was isolated from the 3D skin cells and the NHEK cell line, and the qPCR method was used to determine the expression of: IL-4α, H4R, TRPV1, TRPV4, TRPM8 analyzed. Results The study showed that OST significantly reduced the secretion of IL-4/-13 in a keratinocyte cell line and in a 3D skin model. In addition, OST was found to significantly decrease the gene expression of IL-4α, H4R, TRPV1, TRPV4 and increase TRPM8 in both the NHEK cell line and the organotypic 3D skin model. Conclusion The data obtained provide the first in vitro evidence of itch relief following the application of OST to atopic skin. Research on the use of OST as an active component of emollients in the treatment of AD should be continued in the future.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, 10-719, Poland
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, 10-719, Poland
| |
Collapse
|
2
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
3
|
Osthole Inhibits Expression of Genes Associated with Toll-like Receptor 2 Signaling Pathway in an Organotypic 3D Skin Model of Human Epidermis with Atopic Dermatitis. Cells 2021; 11:cells11010088. [PMID: 35011650 PMCID: PMC8750192 DOI: 10.3390/cells11010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor (TLR) family signature has been linked to the etiopathology of atopic dermatitis (AD), a chronic inflammatory skin disease associated with skin barrier dysfunction and immune system imbalance. We aimed to investigate whether osthole (a plant-derived compound) can inhibit the genetic profile of key genes associated with TLR2 signaling (TIRAP, MyD88, IRAK1, TRAF6, IκBα, NFκB) after stimulation with LPS or histamine in a 3D in vitro model of AD. Overexpression of the aforementioned genes may directly increase the secretion of proinflammatory cytokines (CKs) and chemokines (ChKs), which may exacerbate the symptoms of AD. Relative gene expressions were quantified by qPCR and secretion of CKs and ChKs was evaluated by ELISA assay. LPS and histamine increased the relative expression of genes related to the TLR2 pathway, and osthole successfully reduced it. In summary, our results show that osthole inhibits the expression of genes associated with the TLR signaling pathway in a skin model of AD. Moreover, the secretion of CKs and ChKs after treatment of AD with osthole in a 3D skin model in vitro suggests the potential of osthole as a novel compound for the treatment of AD.
Collapse
|
4
|
Kordulewska NK, Topa J, Rozmus D, Jarmołowska B. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci 2021; 22:ijms222413634. [PMID: 34948440 PMCID: PMC8708099 DOI: 10.3390/ijms222413634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Hyperactivity of the immune system in the gastrointestinal tract leads to the development of chronic, inflammation-associated disorders. Such diseases, including inflammatory bowel disease, are not completely curable, but the specific line of treatment may reduce its symptoms. However, the response to treatment varies among patients, creating a necessity to uncover the pathophysiological basis of immune-mediated diseases and apply novel therapeutic strategies. The present study describes the anti-inflammatory properties of osthole during histamine-induced inflammation in the intestinal Caco-2 cell line. Osthole reduced the secretion of cytokines (CKs) and the expression level of inflammation-associated genes, which were increased after a histamine treatment. We have shown that the secretion of pro-inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) during inflammation may be mediated by NFκB, and, after osthole treatment, this signaling pathway was disrupted. Our results suggest a possible role for osthole in the protection against inflammation in the gastrointestinal tract; thus, osthole may be considered as an anti-inflammatory modulator.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| |
Collapse
|
5
|
Viganò M, Lugano G, Orfei CP, Menon A, Ragni E, Colombini A, de Luca P, Talò G, Randelli PS, de Girolamo L. Tendon Cells Derived From The Long Head Of The Biceps And The Supraspinatus Tendons Of Patients Affected By Rotator Cuff Tears Show Different Expression Of Inflammatory Markers. Connect Tissue Res 2021; 62:570-579. [PMID: 32921180 DOI: 10.1080/03008207.2020.1816993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY Tendons are exposed to mechanical stress constantly during movements and thus they are frequently subjected to injuries. Rotator cuff tears are common musculoskeletal disorders, mainly involving the supraspinatus tendon. The characterization of the tenocytes derived from this tendon and the comparison to cells isolated from the long head of the biceps tendon obtained from donors affected by rotator cuff disease may improve the knowledge of the cellular mechanisms involved in the initiation and progression of the pathology. Thus, the aim of the present study was to characterize and compare donor-matched human tendon cells (TCs) isolated from the long head of the biceps (LHB-TCs) and the supraspinatus tendons (SSP-TCs) of patients affected by rotator cuff tears. METHODS donor-matched LHB-TCs and SSP-TCs were isolated and cultured up to passage 3. Phenotypic appearance, metabolic activity, DNA content, production of soluble mediators (IL-1Ra, IL-1β, IL-6, and VEGF) and gene expression of tendon markers (SCX, COL1A1, COL3A1), inflammatory (PTGS2), and catabolic enzymes (MMP-1, MMP-3) were evaluated. RESULTS LHB-TCs showed an elongated fibroblast-like shape, while SSP-TCs appeared irregular with jagged membrane. SSP-TCs gene expression revealed an augmented production of PTGS2, a marker of inflammation, whereas they produced a reduced amount of IL-6, in respect to LHB-TCs. CONCLUSION SSP-TCs showed higher cellular stress and expression of inflammatory markers with respect to donor-matched LHB-TCs, suggesting that addressing the physio-pathological state of supraspinatus tendon cells during treatment of rotator cuff tears could favor tissue healing and possibly prevent relapses.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Gaia Lugano
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Alessandra Menon
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy.,Research Center for Adult and Pediatric Rheumatic Diseases (RECAP-RD), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Enrico Ragni
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Paola de Luca
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giuseppe Talò
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Pietro S Randelli
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy.,Research Center for Adult and Pediatric Rheumatic Diseases (RECAP-RD), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Laura de Girolamo
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
6
|
The Protective Effects of Maresin 1 in the OVA-Induced Asthma Mouse Model. Mediators Inflamm 2021; 2021:4131420. [PMID: 33628113 PMCID: PMC7889371 DOI: 10.1155/2021/4131420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/11/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic inflammatory disease that cannot be cured. Maresin 1 (MaR1) is a specific lipid synthesized by macrophages that exhibits powerful anti-inflammatory effects in various inflammatory diseases. The goal of this study was to evaluate the effect of MaR1 on allergic asthma using an ovalbumin- (OVA-) induced asthma model. Thirty BALB/c mice were randomly allocated to control, OVA, and MaR1 + OVA groups. Mice were sacrificed 24 hours after the end of the last challenge, and serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for further analysis. Western blotting was used to measure the protein level of IκBα, the activation of the NF-κB signaling pathway, and the expression of NF-κB downstream inflammatory cytokines. Quantitative real-time polymerase chain reactions (qRT-PCRs) were used to evaluate the expression levels of COX-2 and ICAM-1 in lung tissues. We found that high doses of MaR1 were most effective in preventing OVA-induced inflammatory cell infiltration and excessive mucus production in lung tissue, reducing the number of inflammatory cells in the BALF and inhibiting the expression of serum or BALF-associated inflammatory factors. Furthermore, high-dose MaR1 treatment markedly suppressed the activation of the NF-κB signaling pathway, the degradation of IκBα, and the expression of inflammatory genes downstream of NF-κB, such as COX-2 and ICAM-1, in the OVA-induced asthma mouse model. Our findings indicate that MaR1 may play a critical role in OVA-induced asthma and may be therapeutically useful for the management of asthma.
Collapse
|
7
|
Kordulewska NK, Topa J, Tańska M, Cieślińska A, Fiedorowicz E, Savelkoul HFJ, Jarmołowska B. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients 2020; 13:E123. [PMID: 33396265 PMCID: PMC7824174 DOI: 10.3390/nu13010123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150-450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | - Małgorzata Tańska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, 6700 AH Wageningen, The Netherlands;
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| |
Collapse
|
8
|
Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells Int 2019; 2019:5620286. [PMID: 31885616 PMCID: PMC6915130 DOI: 10.1155/2019/5620286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) emerged as a promising therapy for tendon pathologies. Microfragmented adipose tissue (μFAT) represents a convenient autologous product for the application of MSC-based therapies in the clinical setting. In the present study, the ability of μFAT to counteract inflammatory processes induced by IL-1β on human tendon cells (TCs) was evaluated. Methods Cell viability and proliferation were evaluated after 48 hours of transwell coculture of TCs and autologous μFAT in the presence or absence of IL-1β. Gene expression of scleraxis, collagen type I and type III, metalloproteinases-1 and -3, and cyclooxygenase-2 was evaluated by real-time RT-PCR. The content of VEGF, IL-1Ra, TNFα, and IL-6 was evaluated by ELISA. Results IL-1β-treated TCs showed augmented collagen type III, metalloproteases, and cyclooxygenase-2 expression. μFAT was able to reduce the expression of collagen type III and metalloproteases-1 in a significant manner, and at the same time, it enhanced the production of VEGF, IL-1Ra, and IL-6. Conclusions In this in vitro model of tendon cell inflammation, the paracrine action of μFAT, exerted by anti-inflammatory molecules and growth factors, was able to inhibit the expression of fibrosis and catabolic markers. Then, these results suggest that the application of μFAT may represent an effective conservative or adjuvant therapy for the treatment of tendon disorders.
Collapse
|
9
|
Waqas M, Wang Y, Li A, Qamar H, Yao W, Tong X, Zhang J, Iqbal M, Mehmood K, Li J. Osthole: A Coumarin Derivative Assuage Thiram-Induced Tibial Dyschondroplasia by Regulating BMP-2 and RUNX-2 Expressions in Chickens. Antioxidants (Basel) 2019; 8:antiox8090330. [PMID: 31443437 PMCID: PMC6770413 DOI: 10.3390/antiox8090330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Avian tibial dyschondroplasia affects fast growing broiler chickens accounting for almost 30% of leg ailments in broilers. The present project was designed to assess the efficacy of osthole against avian tibial dyschondroplasia (TD). Two hundred and forty chickens were equally allocated into control, TD and osthole groups (n = 80). The TD and osthole group chickens were challenged with tetramethylthiuram disulfide (thiram) at 50 mg/kg of feed from 4–7 days, followed by osthole administration at 20 mg/kg orally to the osthole group only from 8–18 days. Thiram feeding resulted in lameness, increased mortality, and decreased production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-PX) levels, along with significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels, and growth plate size. Moreover, the genes and protein expressions of BMP-2 and RUNX-2 were significantly down-regulated in TD affected chickens (p < 0.05). Osthole administration showed promising results by alleviating lameness; increased ALP, SOD, T-AOC, and GSH-Px levels; and decreased the AST, ALT, and MDA levels significantly. It restored the size of the growth plate and significantly up-regulated the BMP-2 and RUNX-2 expressions (p < 0.05). In conclusion, the oxidative stress and growth plate anomalies could be assuaged using osthole.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China.
| |
Collapse
|
10
|
Use of anti-histamines and osthole in autistic children. Int Immunopharmacol 2019; 73:201-202. [DOI: 10.1016/j.intimp.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
|
11
|
Kordulewska NK, Kostyra E, Chwała B, Moszyńska M, Cieślińska A, Fiedorowicz E, Jarmołowska B. A novel concept of immunological and allergy interactions in autism spectrum disorders: Molecular, anti-inflammatory effect of osthole. Int Immunopharmacol 2019; 72:1-11. [PMID: 30953868 DOI: 10.1016/j.intimp.2019.01.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by Diagnosis and Statistic Manual 5 (DSM-5) as persistent social interaction and communication deficient across multiple contexts. Various immunological findings have been reported in children with ASD, and co-existing allergic problems have been recorded in children diagnosed with ASD. Osthole, the effective component of Chinese traditional medicine, is reported to have anti-inflammatory effects. This study assessed the anti-inflammatory effect of osthole on the histamine-induced inflammatory responses in PBMC cells. METHODS Peripheral blood mononuclear cells (PBMC's) from children with: (1) ASD group with co-existing allergies/asthma (n = 29); (2) ASD group without allergy/asthma (n = 29); (3) Allergy group (n = 30) and from typically developing age-matched control subjects (n = 28) were stimulated with either histamine, FXF, osthole or mixture of this substances. mRNA COX-2 gene expression, COX-2 production and inhibitory effect of tested substances on COX-2 were assessed after stimulation. RESULTS Children with ASD may show either an innate proinflammatory response or increased activity of COX-2 which could display more impaired behavioral profile than children with non-inflamed. This study indicated that COX-2 may be involved in pathogenesis of ASD and/or allergy, and osthole could be used to decrease the effects of COX-2 in inflammation and ASD development. High incidence of allergy in ASD patients may indicate immune dysregulation that could be of relevance to the pathophysiology, symptomatology or neuroimmunology of ASD. CONCLUSIONS This study shows that fexofenadine (FXF - antihistamine drug) and osthole exhibit selective COX-2 enzyme inhibitory activity. The selective COX-2 activity of osthole may explain further the anti-inflammatory properties of osthole in relieving congestion in allergic rhinitis, and as distinctive effects between FXF and osthole were observed, individual antihistamines may have different modes of action via the COX enzyme system.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Barbara Chwała
- Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Małgorzata Moszyńska
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|