1
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
2
|
Xu F, Deng S, Gavriouchkina D, Zhang G. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:467-477. [PMID: 38045547 PMCID: PMC10689616 DOI: 10.1007/s42995-023-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix-loop-helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00204-y.
Collapse
Affiliation(s)
- Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| | - Shaoxi Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 China
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan
- UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| |
Collapse
|
3
|
Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:83-99. [PMID: 36417051 DOI: 10.1007/s10126-022-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
4
|
Wang YQ, Liu Q, Zhou Y, Chen L, Yang YM, Shi X, Power DM, Li YF. Stage-Specific Transcriptomes of the Mussel Mytilus coruscus Reveals the Developmental Program for the Planktonic to Benthic Transition. Genes (Basel) 2023; 14:genes14020287. [PMID: 36833215 PMCID: PMC9957406 DOI: 10.3390/genes14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Many marine invertebrate larvae undergo complex morphological and physiological changes during the planktonic-benthic transition (a.k.a. metamorphosis). In this study, transcriptome analysis of different developmental stages was used to uncover the molecular mechanisms underpinning larval settlement and metamorphosis of the mussel, Mytilus coruscus. Analysis of highly upregulated differentially expressed genes (DEGs) at the pediveliger stage revealed enrichment of immune-related genes. The results may indicate that larvae co-opt molecules of the immune system to sense and respond to external chemical cues and neuroendocrine signaling pathways forecast and trigger the response. The upregulation of adhesive protein genes linked to byssal thread secretion indicates the anchoring capacity required for larval settlement arises prior to metamorphosis. The results of gene expression support a role for the immune and neuroendocrine systems in mussel metamorphosis and provide the basis for future studies to disentangle gene networks and the biology of this important lifecycle transformation.
Collapse
Affiliation(s)
- Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Liu
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lizhi Chen
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yue-Ming Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deborah M. Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (D.M.P.); (Y.-F.L.)
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (D.M.P.); (Y.-F.L.)
| |
Collapse
|
5
|
Crandall G, Elliott Thompson R, Eudeline B, Vadopalas B, Timmins-Schiffman E, Roberts S. Proteomic response of early juvenile Pacific oysters ( Crassostrea gigas) to temperature. PeerJ 2022; 10:e14158. [PMID: 36262416 PMCID: PMC9575672 DOI: 10.7717/peerj.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Pacific oysters (Crassostrea gigas) are a valuable aquaculture product that provides important ecosystem benefits. Among other threats, climate-driven changes in ocean temperature can impact oyster metabolism, survivorship, and immune function. We investigated how elevated temperature impacts larval oysters during settlement (19-33 days post-fertilization), using shotgun proteomics with data-independent acquisition to identify proteins present in the oysters after 2 weeks of exposure to 23 °C or 29 °C. Oysters maintained at elevated temperatures were larger and had a higher settlement rate, with 86% surviving to the end of the experiment; these oysters also had higher abundance trends of proteins related to metabolism and growth. Oysters held at 23 °C were smaller, had a decreased settlement rate, displayed 100% mortality, and had elevated abundance trends of proteins related to immune response. This novel use of proteomics was able to capture characteristic shifts in protein abundance that hint at important differences in the phenotypic response of Pacific oysters to temperature regimes. Additionally, this work has produced a robust proteomic product that will be the basis for future research on bivalve developmental processes.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Brent Vadopalas
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Barbosa M, Schwaner C, Pales Espinosa E, Allam B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification. Genes (Basel) 2022; 13:1529. [PMID: 36140697 PMCID: PMC9498863 DOI: 10.3390/genes13091529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
Collapse
Affiliation(s)
| | | | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Sony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
7
|
Transcriptome Dynamics of an Oyster Larval Response to a Conspecific Cue-Mediated Settlement Induction in the Pacific Oyster Crassostrea gigas. DIVERSITY 2022. [DOI: 10.3390/d14070559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms underlying the conspecific cue-mediated larval settlement in Crassostrea gigas is not yet fully understood. In this study, we described and compared the transcriptomes of competent pediveligers (Pedi) and conspecific cue-induced postlarvae (PL). A total of 2383 candidate transcripts were identified: 740 upregulated and 1643 downregulated transcripts, after settlement. Gene Ontology analysis revealed active chitin binding, calcium ion binding, and extracellular region processes in both stages. Results showed that the differential expression trend of six candidate transcripts were consistent between the quantitative real-time PCR and transcriptome data. The differential transcript expression related to shell formation showed closely linked dynamics with a gene regulatory network that may involve the interplay of various hormone receptors, neurotransmitters, and neuropeptide receptors working together in a concerted way in the Pedi and PL stages. Our results highlight the transcriptome dynamics underlying the settlement of oysters on conspecific adult shells and demonstrate the potential use of this cue as an attractant for wild and hatchery-grown oyster larval attachment on artificial substrates. It also suggests the possible involvement of an ecdysone signal pathway that may be linked to a neuroendocrine-biomineralization crosstalk in C. gigas settlement.
Collapse
|
8
|
Zhang T, Jiang W, Liao F, Zhu P, Guo L, Zhao Z, Liu Y, Huang X, Zhou N. Identification of the key exosomal lncRNAs/mRNAs in the serum during distraction osteogenesis. J Orthop Surg Res 2022; 17:291. [PMID: 35643547 PMCID: PMC9148531 DOI: 10.1186/s13018-022-03163-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Distraction osteogenesis (DO), a kind of bone regenerative process, is not only extremely effective, but the osteogenesis rate is far beyond ordinary bone fracture (BF) healing. Exosomes (Exo) are thought to play a part in bone regeneration and healing as key players in cell-to-cell contact. The object of this work was to determine whether exosomes derived from DO and BF serum could stimulate the Osteogenic Differentiation in these two processes, and if so, which genes could be involved. Methods The osteogenesis in DO-gap or BF-gap was evaluated using radiographic analysis and histological analysis. On the 14th postoperative day, DO-Exos and BF-Exos were isolated and cocultured with the jaw of bone marrow mesenchymal stem cells (JBMMSCs). Proliferation, migration and osteogenic differentiation of JBMMSCs were ascertained, after which exosomes RNA-seq was performed to identify the relevant gene. Results Radiographic and histological analyses manifested that osteogenesis was remarkably accelerated in DO-gap in comparison with BF-gap. Both of the two types of Exos were taken up by JBMMSCs, and their migration and osteogenic differentiation were also seen to improve. However, the proliferation showed no significant difference. Finally, exosome RNA-seq revealed that the lncRNA MSTRG.532277.1 and the mRNA F-box and leucine-rich repeat protein 14(FBXL14) may play a key role in DO. Conclusions Our findings suggest that exosomes from serum exert a critical effect on the rapid osteogenesis in DO. This promoting effect might have relevance with the co-expression of MSTRG.532277.1 and FBXL14. On the whole, these findings provide new insights into bone regeneration, thereby outlining possible therapeutic targets for clinical intervention.
Collapse
|
9
|
Chen J, Zhai Z, Lu L, Li S, Guo D, Bai L, Yu D. Identification and Characterization of miRNAs and Their Predicted mRNAs in the Larval Development of Pearl Oyster Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:303-319. [PMID: 35353261 DOI: 10.1007/s10126-022-10105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
As an important economic shellfish, the pearl oyster, Pinctada fucata, and its larvae are an ideal model for studying molecular mechanisms of larval development in invertebrates. Larval development directly affects the quantity and quality of pearl oysters. MicroRNAs (miRNAs) may play important roles in development, but the effects of miRNA expression on P. fucata early development remain unknown. In this study, miRNA and mRNA transcriptomics of seven different P. fucata developmental stages were analyzed using Illumina RNA sequencing. A total of 329 miRNAs, including 87 known miRNAs and 242 novel miRNAs, and 33,550 unigenes, including 26,333 known genes and 7217 predicted new genes, were identified in these stages. A cluster analysis showed that the difference in the numbers of miRNAs was greatest between fertilized eggs and trochophores. In addition, the integrated mRNA transcriptome was used to predict target genes for differentially expressed miRNAs between adjacent developmental stages, and the target genes were subjected to a gene ontology enrichment analysis. Using the gene ontology annotation, 100 different expressed genes and 95 differentially expressed miRNAs were identified as part of larval development regulation. Real-time PCR was used to identify eight mRNAs and three miRNAs related to larval development. The present findings will be helpful for further clarifying the regulatory mechanisms of miRNA in invertebrate larval development.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Ziqin Zhai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lili Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Suping Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Dan Guo
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| |
Collapse
|
10
|
Whaite A, Klein A, Mitu S, Wang T, Elizur A, Cummins S. The byssal-producing glands and proteins of the silverlip pearl oyster Pinctada maxima (Jameson, 1901). BIOFOULING 2022; 38:186-206. [PMID: 35282730 DOI: 10.1080/08927014.2022.2049256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Pinctada maxima are most well known for their production of high-quality natural pearls. They also generate another natural material, the byssus, an adhesive thread critical for steadfast attachment underwater. Herein, P. maxima byssal threads were analysed via proteotranscriptomics to reveal 49 proteins. Further characterisation was undertaken on five highly expressed genes: glycine-rich thread protein (GRT; also known as PUF3), apfp1/perlucin-like protein (Pmfp1); peroxidase; thrombospondin 1, and Balbiani ring 3 (BR3), which showed localised tissue expression. The spatial distribution of GRT and Pmfp1 via immunodetection combined with histology helped to identify glandular regions of the foot that contribute to byssal thread production: the byssal gland, the duct gland, and two thread-forming glands of basophilic and acidophilic serous-like cells. This work advanced primary knowledge on the glands involved in the creation of byssal threads and the protein composition of the byssus for P. maxima, providing a platform for the design of marine biopolymers.
Collapse
Affiliation(s)
- Alessandra Whaite
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Anne Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Shahida Mitu
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
11
|
Zhang Y, Mao F, Xiao S, Yu H, Xiang Z, Xu F, Li J, Wang L, Xiong Y, Chen M, Bao Y, Deng Y, Huo Q, Zhang L, Liu W, Li X, Ma H, Zhang Y, Mu X, Liu M, Zheng H, Wong NK, Yu Z. Comparative Genomics Reveals Evolutionary Drivers of Sessile Life and Left-right Shell Asymmetry in Bivalves. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1078-1091. [PMID: 35091095 DOI: 10.1016/j.gpb.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems. Across these ancient lineages, colony-founding larvae anchor themselves either by byssus production or by cemented attachment. The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis. Here, we sequenced the genome of C. hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry. Importantly, loss of the homeobox gene Antennapedia (Antp) and broad expansion of lineage-specific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves. Comparative transcriptomic analysis shows a conspicuous divergence between left-right asymmetrical C. hongkongensis and symmetrical Pinctada fucata in their expression profiles. Especially, a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated, and may cooperatively govern asymmetrical shell formation in Ostreoida oysters.
Collapse
Affiliation(s)
- Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fei Xu
- CAS Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengqiu Chen
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yuewen Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Quan Huo
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066044, China
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiyu Mu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101301, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101301, China.
| | - Nai-Kei Wong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
12
|
Li Y, Tsim KWK, Wang WX. Copper promoting oyster larval growth and settlement: Molecular insights from RNA-seq. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147159. [PMID: 33894613 DOI: 10.1016/j.scitotenv.2021.147159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
As a cofactor of key enzymes, Cu is required in living organisms, although Cu levels in the natural environment are typically low. In this study, the promotion of growth and settlement on the larvae of oyster Crassostrea angulata was observed at an environmentally relevant concentration (10 μg/L Cu). Interestingly, Cu accumulation in the soft tissue of oyster larvae increased during the larval development and exhibited a sharp increase at the late pelagic stage. With the help of RNA-seq, we constructed a high-quality transcriptional database of the oyster C. angulata larvae (24,257 genes with an average length of 1594 bp) via de novo assembly, which provided the basic molecular changes during the larval development. Network analysis of five early developmental stages and differential expression under Cu exposure were integrated to examine the roles of Cu in oyster larvae. Our molecular analysis demonstrated that both ion channels and organic transporters contributed to Cu internalization from the external environment, including zinc transporters and amino acid transporters. The followed distribution of Cu across cells was achieved by ATP7A, the circulatory system, and the Cu transporters (CTRs). Cu exposure enhanced the ribosome and the calcium binding proteins with a higher rate of translation and shell formation, giving rise to faster growth of oyster larvae. Furthermore, Cu facilitated the settling process by upregulating the chitin binding genes and then promoting the formation of the proteinaceous matrix between larvae and substrate. Our study presents the molecular basis for Cu promotion (i.e., hormesis) effects on oyster larval growth and settlement.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
13
|
Ballard KR, Klein AH, Hayes RA, Wang T, Cummins SF. The protein and volatile components of trail mucus in the Common Garden Snail, Cornu aspersum. PLoS One 2021; 16:e0251565. [PMID: 34043643 PMCID: PMC8158898 DOI: 10.1371/journal.pone.0251565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
The Common or Brown Garden Snail, Cornu aspersum, is an invasive land snail that has successfully colonized a diverse range of global environments. Like other invasive land snails, it is a significant pest of a variety of agricultural crops, including citrus, grapes and canola. Cornu aspersum secretes a mucus trail when mobile that facilitates locomotion. The involvement of the trail in conspecific chemical communication has also been postulated. Our study found that anterior tentacle contact with conspecific mucus elicited a significant increase in heart rate from 46.9 to 51 beats per minute. In order to gain a better understanding of the constituents of the trail mucus and the role it may play in snail communication, the protein and volatile components of mucus trails were investigated. Using two different protein extraction methods, mass spectrometry analysis yielded 175 different proteins, 29 of which had no significant similarity to any entries in the non-redundant protein sequence database. Of the mucus proteins, 22 contain features consistent with secreted proteins, including a perlucin-like protein. The eight most abundant volatiles detected using gas chromatography were recorded (including propanoic acid and limonene) and their potential role as putative pheromones are discussed. In summary, this study has provided an avenue for further research pertaining to the role of trail mucus in snail communication and provides a useful repository for land snail trail mucus components. This may be utilized for further research regarding snail attraction and dispersal, which may be applied in the fields of agriculture, ecology and human health.
Collapse
Affiliation(s)
- Kaylene R. Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Anne H. Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Richard A. Hayes
- Forest Industries Research Centre, Forest Research Institute, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
14
|
Sedanza MG, Kim HJ, Seposo X, Yoshida A, Yamaguchi K, Satuito CG. Regulatory Role of Sugars on the Settlement Inducing Activity of a Conspecific Cue in Pacific Oyster Crassostrea gigas. Int J Mol Sci 2021; 22:3273. [PMID: 33806943 PMCID: PMC8004857 DOI: 10.3390/ijms22063273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/20/2023] Open
Abstract
This study evaluated the larval settlement inducing effect of sugars and a conspecific cue from adult shell extract of Crassostrea gigas. To understand how the presence of different chemical cues regulate settlement behavior, oyster larvae were exposed to 12 types of sugars, shell extract-coated and non-coated surfaces, and under varied sugar exposure times. Lectin-glycan interaction effects on settlement and its localization on oyster larval tissues were investigated. The results showed that the conspecific cue elicited a positive concentration dependent settlement inducing trend. Sugars in the absence of a conspecific cue, C. gigas adult shell extract, did not promote settlement. Whereas, in the presence of the cue, showed varied effects, most of which were found inhibitory at different concentrations. Sugar treated larvae exposed for 2 h showed significant settlement inhibition in the presence of a conspecific cue. Neu5Ac, as well as GlcNAc sugars, showed a similar interaction trend with wheat germ agglutinin (WGA) lectin. WGA-FITC conjugate showed positive binding on the foot, velum, and mantle when exposed to GlcNAc sugars. This study suggests that a WGA lectin-like receptor and its endogenous ligand are both found in the larval chemoreceptors and the shell Ethylenediaminetetraacetic acid (EDTA) extract that may complementarily work together to allow the oyster larva greater selectivity during site selection.
Collapse
Affiliation(s)
- Mary Grace Sedanza
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.-J.K.); (A.Y.); (K.Y.); (C.G.S.)
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo city 5023, Philippines
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.-J.K.); (A.Y.); (K.Y.); (C.G.S.)
| | - Xerxes Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.-J.K.); (A.Y.); (K.Y.); (C.G.S.)
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.-J.K.); (A.Y.); (K.Y.); (C.G.S.)
| | - Cyril Glenn Satuito
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.-J.K.); (A.Y.); (K.Y.); (C.G.S.)
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
15
|
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel ( Mytilus edulis), Soft Shell Clam ( Mya arenaria), Eastern Oyster ( Crassostrea virginica) and Atlantic Jacknife Clam ( Ensis leei). BIOLOGY 2020; 9:biology9120416. [PMID: 33255637 PMCID: PMC7760292 DOI: 10.3390/biology9120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Oysters and clams form an important component of the food chain and food security and are of considerable commercial value worldwide. They are affected by pollution and climate change, as well as a range of infections, some of which are opportunistic. For aquaculture purposes they are furthermore of great commercial value and changes in their immune responses can also serve as indicators of changes in ocean environments. Therefore, studies into understanding new factors in their immune systems may aid new biomarker discovery and are of considerable value. This study assessed new biomarkers relating to changes in protein function in four economically important marine molluscs, the blue mussel, soft shell clam, Eastern oyster, and Atlantic jacknife clam. These findings indicate novel regulatory mechanisms of important metabolic and immunology related pathways in these mollusks. The findings provide new understanding to how these pathways function in diverse ways in different animal species as well as aiding new biomarker discovery for Mollusca aquaculture. Abstract Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J. Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME 04469-5735, USA;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
16
|
Temporal proteomic profiling reveals insight into critical developmental processes and temperature-influenced physiological response differences in a bivalve mollusc. BMC Genomics 2020; 21:723. [PMID: 33076839 PMCID: PMC7574277 DOI: 10.1186/s12864-020-07127-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Background Protein expression patterns underlie physiological processes and phenotypic differences including those occurring during early development. The Pacific oyster (Crassostrea gigas) undergoes a major phenotypic change in early development from free-swimming larval form to sessile benthic dweller while proliferating in environments with broad temperature ranges. Despite the economic and ecological importance of the species, physiological processes occurring throughout metamorphosis and the impact of temperature on these processes have not yet been mapped out. Results Towards this, we comprehensively characterized protein abundance patterns for 7978 proteins throughout metamorphosis in the Pacific oyster at different temperature regimes. We used a multi-statistical approach including principal component analysis, ANOVA-simultaneous component analysis, and hierarchical clustering coupled with functional enrichment analysis to characterize these data. We identified distinct sets of proteins with time-dependent abundances generally not affected by temperature. Over 12 days, adhesion and calcification related proteins acutely decreased, organogenesis and extracellular matrix related proteins gradually decreased, proteins related to signaling showed sinusoidal abundance patterns, and proteins related to metabolic and growth processes gradually increased. Contrastingly, different sets of proteins showed temperature-dependent abundance patterns with proteins related to immune response showing lower abundance and catabolic pro-growth processes showing higher abundance in animals reared at 29 °C relative to 23 °C. Conclusion Although time was a stronger driver than temperature of metamorphic proteome changes, temperature-induced proteome differences led to pro-growth physiology corresponding to larger oyster size at 29 °C, and to altered specific metamorphic processes and possible pathogen presence at 23 °C. These findings offer high resolution insight into why oysters may experience high mortality rates during this life transition in both field and culture settings. The proteome resource generated by this study provides data-driven guidance for future work on developmental changes in molluscs. Furthermore, the analytical approach taken here provides a foundation for effective shotgun proteomic analyses across a variety of taxa.
Collapse
|
17
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
18
|
Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genomics 2019; 20:581. [PMID: 31299887 PMCID: PMC6626399 DOI: 10.1186/s12864-019-5917-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.
Collapse
|
19
|
Rees DJ, Hanifi A, Obille A, Alexander R, Sone ED. Fingerprinting of Proteins that Mediate Quagga Mussel Adhesion using a De Novo Assembled Foot Transcriptome. Sci Rep 2019; 9:6305. [PMID: 31004089 PMCID: PMC6474901 DOI: 10.1038/s41598-019-41976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The European freshwater mollusk Dreissena bugensis (quagga mussel), an invasive species to North America, adheres to surfaces underwater via the byssus: a non-living protein 'anchor'. In spite of its importance as a biofouling species, the sequence of the majority of byssal proteins responsible for adhesion are not known, and little genomic data is available. To determine protein sequence information, we utilized next-generation RNA sequencing and de novo assembly to construct a cDNA library of the quagga mussel foot transcriptome, which contains over 200,000 transcripts. Quagga mussel byssal proteins were extracted from freshly induced secretions and analyzed using LC-MS/MS; peptide spectra were matched to the transcriptome to fingerprint the entire protein primary sequences. We present the full sequences of fourteen novel quagga mussel byssal proteins, named Dreissena bugensis foot proteins 4 to 17 (Dbfp4-Dbfp17), and new sequence data for two previously observed byssal proteins Dbfp1 and Dbfp2. Theoretical masses of the newly discovered proteins range from 4.3 kDa to 21.6 kDa. These protein sequences are unique but contain features similar to glue proteins from other species, including a high degree of polymorphism, proteins with repeated peptide motifs, disordered protein structure, and block structures.
Collapse
Affiliation(s)
- David J Rees
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Arash Hanifi
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Angelico Obille
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Robert Alexander
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Eli D Sone
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Transcriptional Regulation: Molecules, Involved Mechanisms, and Misregulation. Int J Mol Sci 2019; 20:ijms20061281. [PMID: 30875728 PMCID: PMC6471904 DOI: 10.3390/ijms20061281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
|