1
|
Deng J, Hu Y, Zhang Y, Yu F. Ghrelin improves endothelial function and reduces blood pressure in Ang II-induced hypertensive mice: Role of AMPK. Clin Exp Hypertens 2023; 45:2208774. [PMID: 37149883 DOI: 10.1080/10641963.2023.2208774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Endothelial dysfunction is a major pathophysiology observed in hypertension. Ghrelin, a key regulator of metabolism, has been shown to play protective roles in cardiovascular system. However, whether it has the effect of improving endothelial function and lowering blood pressure in Ang II-induced hypertensive mice remains unclear. METHODS In this study, hypertension was induced by continuous infusion of Ang II with a subcutaneous osmotic pumps and ghrelin (30 μg/kg/day) was intraperitoneal injection for 4 weeks. Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph and superoxide production in mouse aortae was assessed by fluorescence imaging. RESULTS We found that ghrelin had protective effects on Ang II-induced hypertension by inhibiting oxidative stress, increasing NO production, improving endothelial function, and lowering blood pressure. Furthermore, ghrelin activated AMPK signaling in Ang II-induced hypertension, leading to inhibition of oxidative stress. Compound C, a specific inhibitor of AMPK, reversed the protective effects of ghrelin on the reduction of oxidative stress, the improvement of endothelial function and the reduction of blood pressure. CONCLUSIONS our findings indicated that ghrelin protected against Ang II-induced hypertension by improving endothelial function and lowering blood pressure partly through activating AMPK signaling. Thus, ghrelin may be a valuable therapeutic strategy for hypertension.
Collapse
Affiliation(s)
- Juan Deng
- Department of Endocrinology, People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Yuan Hu
- Department of Endocrinology, Songshan General Hospital, Chongqing, China
| | - Yindi Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fadong Yu
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wolf M, Heni M, Hennige AM, Sippel K, Cegan A, Higuita LMS, Martus P, Häring HU, Fritsche A, Peter A. Acylated- and unacylated ghrelin during an oral glucose tolerance test in humans at risk for type 2 diabetes mellitus. Int J Obes (Lond) 2023; 47:825-832. [PMID: 37420007 PMCID: PMC10439001 DOI: 10.1038/s41366-023-01327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/24/2022] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND/OBJECTIVES The orexigenic peptide hormone ghrelin has been implicated in the pathophysiology of obesity and type 2 diabetes mellitus through its effects on nutrient homeostasis. Ghrelin is subject to a unique post-translational acyl modification regulating its biochemical activity. SUBJECTS/METHODS In this study we aimed to investigate the relation of acylated (AcG) as well as unacylated ghrelin (UnG) with body weight and insulin resistance in the fasting (n = 545) and post-oral glucose tolerance test (oGTT) state (n = 245) in a metabolically well characterized cohort covering a broad range of BMI (17.95 kg/m²-76.25 kg/m²). RESULTS Fasting AcG (median 94.2 pg/ml) and UnG (median 175.3 pg/ml) were negatively and the AcG/UnG ratio was positively correlated with BMI (all p < 0.0001). Insulin sensitivity (ISI) correlated positively with AcG (p = 0.0014) and UnG (p = 0.0004) but not with the AcG/UnG ratio. In a multivariate analysis, including ISI and BMI, only BMI, but not ISI was independently associated with AcG and UnG concentrations. Significant changes of AcG and UnG concentrations were detectable after oGTT stimulation, with slight decreases after 30 min and increases after 90-120 min. Subject stratification into BMI-divergent groups revealed more pronounced AcG increases in the two groups with BMI < 40 kg/m². CONCLUSION Our data demonstrate lower concentrations for both AcG and UnG with increasing BMI as well as an increased proportion of the biologically active, acylated form of ghrelin giving point to pharmacologic intervention in ghrelin acylation and/or increase in UnG for treatment of obesity despite decreased absolute AcG levels.
Collapse
Affiliation(s)
- Magnus Wolf
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | | | - Katrin Sippel
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Lina María Serna Higuita
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
4
|
Peneva VM, Terzieva DD, Mitkov MD. Role of Melatonin in the Onset of Metabolic Syndrome in Women. Biomedicines 2023; 11:1580. [PMID: 37371675 DOI: 10.3390/biomedicines11061580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic syndrome (MetS) is a constellation of several associated cardiometabolic risk factors that increase the risk of developing type 2 diabetes mellitus (T2DM), cardiovascular diseases, and mortality. The role of hormonal factors in the development of MetS is assumed. In women, an insulin-resistant state that is associated with polycystic ovarian syndrome and increased deposition of intra-abdominal adipose tissue promotes the development of MetS and increases cardiovascular risk. The neuroendocrine hormone melatonin is secreted mainly at night under the regulatory action of the suprachiasmatic nucleus in the hypothalamus. Melatonin secretion is influenced by exogenous factors such as light and seasons and endogenous factors such as age, sex, and body weight. At present, the role of melatonin in metabolic disorders in humans is not fully understood. In this review, we set out to analyze the relationship of melatonin with the main features of MetS in women. Data from experimental and clinical studies on the role of melatonin in glucose metabolism and on the involvement of melatonin in lipid disturbances in MetS are reviewed. The complex influence of melatonin on hypertension is discussed. The changes in melatonin, leptin, and ghrelin and their relation to various metabolic processes and vascular dysfunction are discussed.
Collapse
Affiliation(s)
- Vania Miloucheva Peneva
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University, 4002 Plovdiv, Bulgaria
| | - Dora Dimitrova Terzieva
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University, 4002 Plovdiv, Bulgaria
| | - Mitko Dimitrov Mitkov
- Department of Endocrinology, Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
7
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
8
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Ghrelin Alleviates Endoplasmic Reticulum Stress in MC3T3E1 Cells by Inhibiting AMPK Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9940355. [PMID: 34671436 PMCID: PMC8523291 DOI: 10.1155/2021/9940355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Ghrelin is a gastric endocrine peptide that has been found to be involved in the process of energy homeostasis and bone physiology in recent years. To explore the effects of ghrelin on endoplasmic reticulum stress (ERS) in MC3T3E1 cells and its possible mechanism, an ERS model was induced by tunicamycin (TM) in the osteoblast line MC3T3E1. TM at 1.5 μg/mL was selected as the experimental concentration found by CCK8 assay. Through the determination of apoptosis, reactive oxygen species production, and endoplasmic reticulum stress-related gene expression, we found that ERS induced by TM can be relieved by ghrelin in a concentration-dependent manner (P < 0.001). Compared with the TM group, ghrelin reduced the expression of ERS-related marker genes induced by TM. Compared with the GSK621 + TM group without ghrelin pretreatment, the mRNA expression of genes in the ghrelin pretreatment group decreased significantly (P < 0.001). The results of protein analysis showed that the levels of BIP, p-AMPK, and cleaved-caspase3 in the TM group increased significantly, while the levels decreased after ghrelin pretreatment. In group GSK621 + TM compared with group GSK621 + ghrelin+TM, ghrelin pretreatment significantly reduced the level of p-AMPK, which is consistent with the trend of the ERS-related proteins BIP and cleaved-caspase3. In conclusion, ghrelin alleviates the ERS induced by TM in a concentration-dependent manner and may or at least partly alleviate the apoptosis induced by ERS in MC3T3E1 cells by inhibiting the phosphorylation of AMPK.
Collapse
|
10
|
Močnik M, Marčun Varda N. Cardiovascular Risk Factors in Children with Obesity, Preventive Diagnostics and Possible Interventions. Metabolites 2021; 11:metabo11080551. [PMID: 34436493 PMCID: PMC8398426 DOI: 10.3390/metabo11080551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing burden of obesity plays an essential role in increased cardiovascular morbidity and mortality. The effects of obesity on the cardiovascular system have also been demonstrated in childhood, where prevention is even more important. Obesity is associated with hormonal changes and vascular dysfunction, which eventually lead to hypertension, hyperinsulinemia, chronic kidney disease, dyslipidemia and cardiac dysfunction—all associated with increased cardiovascular risk, leading to potential cardiovascular events in early adulthood. Several preventive strategies are being implemented to reduce the cardiovascular burden in children. This paper presents a comprehensive review of obesity-associated cardiovascular morbidity with the preventive diagnostic workup at our hospital and possible interventions in children.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Correspondence: ; Tel.: +386-40323726
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
11
|
Wu CR, Yang QY, Chen QW, Li CQ, He WY, Zhao YP, Wang L. Ghrelin attenuate cerebral microvascular leakage by regulating inflammation and apoptosis potentially via a p38 MAPK-JNK dependent pathway. Biochem Biophys Res Commun 2021; 552:37-43. [PMID: 33740663 DOI: 10.1016/j.bbrc.2021.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Ghrelin is a peptide hormone with strong anti-inflammatory properties. In fact, Ghrelin was reported to improve endothelial dysfunction caused by excessive fat. However, its role in preserving the integrity of brain microvascular, under conditions of lipid dysregulation and inflammation, is not known. The objective of this study is to characterize the role of Ghrelin in the protection of cerebral microvascular integrity, during atherosclerosis, and uncover its underlying molecular mechanism. Our results demonstrated that an atherosclerotic condition, brought on by a high fat diet (HFD), can produce massive increases in serum inflammatory factors, blood lipids, cerebral microvascular leakage, and activation of the p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) (p38 MAPK-JNK) pathway. It also produced significantly damaged pericytes morphology, resulting in pericyte decrease. Ghrelin treatment, on the other hand, protected against cerebral microvascular leakage and pericytes damage. Ghrelin effectively downregulated the expression of pro-inflammatory cytokines, and it also suppressed the p38 MAPK-JNK signaling pathway. Additionally, in isolated mouse cerebral microvascular pericytes, ox-LDL lead to increased apoptosis and secretion of inflammatory factors, along with an elevation in phosphorylated p38 MAPK-JNK proteins. Alternately, Ghrelin administration markedly lowered expression of inflammatory factors, suppressed the p38 MAPK-JNK signaling path, and halted cell apoptosis. However, pretreatment of Hesperetin, a p38 MAPK-JNK agonist, abrogated the Ghrelin-mediated suppression of inflammation and apoptosis in pericytes. Taken together, these results suggest that Ghrelin restored cerebral microvascular integrity and reduced vascular leakage in atherosclerosis mice, in part, by its regulation of inflammatory and apoptotic signaling pathways in pericytes.
Collapse
Affiliation(s)
- Chun-Rong Wu
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Qiao-Yun Yang
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Qing-Wei Chen
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China.
| | - Chun-Qiu Li
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Wu-Yang He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Yi-Pin Zhao
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Li Wang
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| |
Collapse
|
12
|
Abstract
Background Oxidative stress is the result of cellular troubles related to aerobic metabolism. Furthermore, this stress is always associated with biological responses evoked by physical, chemical, environmental, and psychological factors. Several studies have developed many approaches of antioxidant defense to diminish the severity of many diseases. Ghrelin was originally identified from the rat stomach, and it is a potent growth hormone-releasing peptide that has pleiotropic functions. Methods A systematic review was conducted within PubMed, ScienceDirect, MEDLINE, and Scopus databases using keywords such as ghrelin, antioxidant, oxidative stress, and systemic oxidative stress sensor. Results In the last decade, many studies show that ghrelin exhibits protection effects against oxidative stress derived probably from its antioxidant effects. Pieces of evidence demonstrate that systemic oxidative stress increase ghrelin levels in the plasma. The expression of ghrelin and its receptor in ghrelin peripheral tissues and extensively in the central nervous system suggests that this endogenous peptide plays an important role as a systemic oxidative stress sensor Conclusion The current evidence confirms that ghrelin and its derived peptides (Desacyl-ghrelin, obestatin) act as a protective antioxidant agent. Therefore, stressor modality, duration, and intensity are the parameters of oxidative stress that must be taken into consideration to determine the role of ghrelin, Desacyl-ghrelin, and obestatin in the regulation of cell death pathways.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Plant Protection and Environment, National School of Agriculture-Meknes/ENA, Meknes, Morocco.,Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Kawtar Raghay
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohammed Errami
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
13
|
Extract of pre-germinated brown rice protects against cardiovascular dysfunction by reducing levels of inflammation and free radicals in a rat model of type II diabetes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure. Nutrients 2020; 12:nu12113393. [PMID: 33158222 PMCID: PMC7694273 DOI: 10.3390/nu12113393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Skeletal muscle (SM) mitochondrial dysfunction, oxidative stress, inflammation and muscle mass loss may worsen prognosis in chronic heart failure (CHF). Diet-induced obesity may also cause SM mitochondrial dysfunction as well as oxidative stress and inflammation, but obesity per se may be paradoxically associated with high SM mass and mitochondrial adenosine triphosphate (ATP) production, as well as with enhanced survival in CHF. Methods: We investigated interactions between myocardial infarction(MI)-induced CHF and diet-induced obesity (12-wk 60% vs. standard 10% fat) in modulating gastrocnemius muscle (GM) mitochondrial ATP and tissue superoxide generation, oxidized glutathione (GSSG), cytokines and insulin signalling activation in 10-wk-old mice in the following groups: lean sham-operated, lean CHF (LCHF), obese CHF (ObCHF; all n = 8). The metabolic impact of obesity per se was investigated by pair-feeding ObCHF to standard diet with stabilized excess body weight until sacrifice at wk 8 post-MI. Results: Compared to sham, LCHF had low GM mass, paralleled by low mitochondrial ATP production and high mitochondrial reative oxygen species (ROS) production, pro-oxidative redox state, pro-inflammatory cytokine changes and low insulin signaling (p < 0.05). In contrast, excess body weight in pair-fed ObCHF was associated with high GM mass, preserved mitochondrial ATP and mitochondrial ROS production, unaltered redox state, tissue cytokines and insulin signaling (p = non significant vs. Sham, p < 0.05 vs. LCHF) despite higher superoxide generation from non-mitochondrial sources. Conclusions: CHF disrupts skeletal muscle mitochondrial function in lean rodents with low ATP and high mitochondrial ROS production, associated with tissue pro-inflammatory cytokine profile, low insulin signaling and muscle mass loss. Following CHF onset, obesity per se is associated with high skeletal muscle mass and preserved tissue ATP production, mitochondrial ROS production, redox state, cytokines and insulin signaling. These paradoxical and potentially favorable obesity-associated metabolic patterns could contribute to reported obesity-induced survival advantage in CHF.
Collapse
|
15
|
Wang X, Yang L, Chen Y, Zhang L, Fei H. Ghrelin promotes angiogenesis by activating the Jagged1/Notch2/VEGF pathway in preeclampsia. J Obstet Gynaecol Res 2020; 47:486-494. [PMID: 33145927 DOI: 10.1111/jog.14555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
AIM Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), has been found to be involved in the regulation of blood pressure; however, its effects in preeclampsia (PE) and the potential underlying mechanism remain poorly understood. In this study, we aimed to investigate the correlation between ghrelin and PE and reveal the possible mechanism underlying any relationship. METHODS The levels of ghrelin and VEGF in the plasma of 6 early-onset PE (EOPE), 6 late-onset PE (LOPE) and 12 healthy pregnant (HP) women were detected using enzyme-linked immunosorbent assay (ELISA). The recombinant plasmid, pCDH-ghrelin, was designed to overexpress ghrelin in human umbilical vein endothelial cells (HUVECs). We analyzed angiogenesis in vitro and investigated the mechanism using MTT assay, colony formation assay, transwell migration assay, Matrigel-induced tube formation assay and western blotting. RESULTS Ghrelin was significantly decreased in EOPE patients (P < 0.05) but elevated in LOPE patients compared to HP groups (P > 0.05). There was a significant decrease in plasma level of VEGF in EOPE and LOPE patients compared to the controls (P < 0.05). The proliferation, migration and tube formation ability of HUVECs were enhanced after transfection with pCDH-ghrelin. Ghrelin increased VEGF by activating the Jagged1/Notch2 pathway. CONCLUSION Our study uncovered that ghrelin has the potential to improve endothelial function by promoting angiogenesis through Jagged1/Notch2/VEGF pathway.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lina Yang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yaping Chen
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liwen Zhang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - He Fei
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Childs MD, Luyt LG. A Decade's Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Mol Imaging 2020; 19:1536012120952623. [PMID: 33104445 PMCID: PMC8865914 DOI: 10.1177/1536012120952623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The growth hormone secretagogue receptor 1a (GHSR), also called the ghrelin receptor, is a G protein-coupled receptor known to play an important metabolic role in the regulation of various physiological processes, including energy expenditure, growth hormone secretion, and cell proliferation. This receptor has been implicated in numerous health issues including obesity, gastrointestinal disorders, type II diabetes, and regulation of body weight in patients with Prader-Willi syndrome, and there has been growing interest in studying its mechanism of behavior to unlock further applications of GHSR-targeted therapeutics. In addition, the GHSR is expressed in various types of cancer including prostate, breast, and testicular cancers, while aberrant expression has been reported in cardiac disease. Targeted molecular imaging of the GHSR could provide insights into its role in biological processes related to these disease states. Over the past decade, imaging probes targeting this receptor have been discovered for the imaging modalities PET, SPECT, and optical imaging. High-affinity analogues of ghrelin, the endogenous ligand for the GHSR, as well as small molecule inhibitors have been developed and evaluated both in vitro and in pre-clinical models. This review provides a comprehensive overview of the molecular imaging agents targeting the GHSR reported to the end of 2019.
Collapse
Affiliation(s)
- Marina D Childs
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Liu Y, Xu XY, Shen Y, Ye CF, Hu N, Yao Q, Lv XZ, Long SL, Ren C, Lang YY, Liu YL. Ghrelin protects against obesity-induced myocardial injury by regulating the lncRNA H19/miR-29a/IGF-1 signalling axis. Exp Mol Pathol 2020; 114:104405. [PMID: 32084395 DOI: 10.1016/j.yexmp.2020.104405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/10/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is associated with the impairment of cardiac fitness and consequent ventricular dysfunction and heart failure. Ghrelin has been largely documented to be cardioprotective against ischaemia/reperfusion injury. However, the role of ghrelin in obesity-induced myocardial injury is largely unknown. This study sought to determine the cardiac effect of ghrelin against obesity-induced injury and the underlying mechanisms. METHODS The effect of ghrelin was evaluated in a mouse model of obesity and a palmitic acid (PA)-treated cardiomyocyte cell line with or without ghrelin transfection. Gene and protein expression levels were determined by real-time PCR and western blot, respectively. Cell apoptosis was measured by flow cytometry analysis. RESULTS In the present study, we found that both a high-fat diet (HFD) and PA treatment caused myocardial injury by increasing apoptosis and the expression of inflammatory cytokines. Overexpression of ghrelin reversed the effects induced by HFD or PA treatment. Knockdown of lncRNA H19 or overexpression of miR-29a abrogated the cardioprotective effects of ghrelin against apoptosis and inflammation. We also found that IGF-1 was a target gene of miR-29a and that H19 regulated IGF-1 expression via miR-29a. Overexpression of IGF-1 partially reversed the apoptosis and inflammation promoting effects of miR-29a. CONCLUSIONS Our findings suggested that ghrelin protected against obesity-induced myocardial injury by regulating the H19/miR-29a/IGF-1 signalling axis, providing further evidence for the clinical application of ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xin-Yue Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yang Shen
- Molecular medicine laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chun-Feng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Na Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Qing Yao
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xiu-Zi Lv
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Sheng-Lan Long
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Chao Ren
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuan-Yuan Lang
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| | - Yan-Ling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
18
|
Cheng XL, Ding F, Wang DP, Zhou L, Cao JM. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-κB signaling pathway-mediated macrophage ox-LDL uptake in ApoE -/- mice. Peptides 2019; 121:170122. [PMID: 31386895 DOI: 10.1016/j.peptides.2019.170122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Growth hormone secretagogues (GHS) have been proved to exert protective effects on the cardiovascular system, while their potential beneficial effects on macrophages in atherosclerosis (AS) are rarely been clarified. This study aimed to demonstrate whether hexarelin, a synthetic peptidyl GHS, can suppress AS progression via regulating the function of macrophages. AS was induced by chronic (3 months) feeding with high lipid diet in ApoE-/- mice. Mice were treated either with hexarelin (100 μg/kg s.c., q.d. for 3 months) (AS + Hex group) or saline (AS group). Age-matched C57BL/6 J mice were used as normal controls. AS and related signaling molecules in aortic tissues and RAW264.7 macrophages were identified with variant methods including histological staining, ELISA, western blotting, confocal microscopy and flow cytometry. AS significantly developed in ApoE-/- mice fed with high lipids diet. Hexarelin decreased serum TC, TG and LDL-c, increased serum HDL-c and attenuated the formation of atherosclerotic plaques and neointima compared with the AS group. Hexarelin decreased the aortic expressions of CD68 and LOX-1 which were elevated in the AS group. Hexarelin increased GHSR expression, suppressed ox-LDL uptake and LOX-1 expression and inhibited nuclear factor-kappa B (NF-κB) activation both in the aorta of ApoE-/- mice and in RAW264.7 macrophages. We conclude that hexarelin effectively attenuates AS progression in ApoE-/- mice by modulating circulatory lipids profile and inhibiting macrophage ox-LDL uptake via suppressing the LOX-1-NF-κB signaling pathway. The study supports the perspective of hexarelin as an anti-AS drug.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Biological Transport/drug effects
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Expression Regulation
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligopeptides/pharmacology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- RAW 264.7 Cells
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Scavenger Receptors, Class E/antagonists & inhibitors
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Signal Transduction
- Triglycerides/blood
Collapse
Affiliation(s)
- Xiu-Li Cheng
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Ding
- Office of Scientific R&D, Tsinghua University, Beijing, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|