1
|
Yang W, Yuan Y, Yang P, Li S, Ma S, Liu X, Zhou X, Chen R. ZmGluTR1 is involved in chlorophyll biosynthesis and is essential for maize development. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154115. [PMID: 37864879 DOI: 10.1016/j.jplph.2023.154115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Chlorophyll is the most important carrier of photosynthesis in plants and is therefore vital for plant growth and development. Synthesis of 5-aminolevulinic acid (ALA) is initiated and catalyzed by glutamyl-tRNA reductase (GluTR) and is the rate-limiting step in chlorophyll biosynthesis. GluTR is controlled by several regulating factors. Although many studies have investigated the structure and function of GluTR in plants, the maize (Zea mays L.) GluTR has not yet been reported. Here, we isolated and identified the first loss-of-function mutant of GluTR in plants from a maize mutagenic population. The stop-gain mutation in ZmGluTR1 resulted in leaf etiolation throughout the growing season. The level of intermediates of chlorophyll biosynthesis and photosynthetic pigments decreased markedly and abnormal chloroplast structure was also observed in the mutants. Further analysis revealed that the deletion of carboxyl terminal (C-terminal) led to premature transcription termination and this hindered the interaction with FLUORESCENT (FLU), thereby influencing the stability of mutated ZmGluTR1 and leading to abolish interaction with GluTR-binding protein (GluBP). Moreover, mutations in the catalytic domain or nicotinamide adenine dinucleotide phosphate (NADPH) binding domain were lethal under normal growth conditions. These results indicate that ZmGluTR1 plays a fundamental role in chlorophyll biosynthesis and maize development.
Collapse
Affiliation(s)
- Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Pengjuan Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Yang G, Peng Y, Liu R, Huang M, Xiao Y, Yang Z, Sun Y, Hu Y, Chen H, Ma J. Effect of chemical fertilizer reduction on the quality of hybrid rice of different amylose contents. J Food Biochem 2022; 46:e14066. [PMID: 34984696 DOI: 10.1111/jfbc.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022]
Abstract
To promote the reduction and efficiency of chemical fertilizers in rice production, two hybrid rice varieties with different amylose contents (16.43% and 27.58%) were selected to study the yield and quality performance of different quality rice varieties under reduced nitrogen/phosphorus conditions. Thus, the specific mechanism of the long-term nitrogen/phosphorus reduction effect on the quality of low- and high-amylose content (16.43% and 27.58%) rice was investigated by comparative analyses of the rapid visco analyzer and X-ray diffraction patterns, amylose contents, and starch structures of the samples. The results revealed that the effect of nitrogen fertilizer on the quality and yield of the hybrid rice was greater than that of phosphorus fertilizer. Indeed, reducing the former increased the Wx gene expression and amylose content of the rice varieties. Moreover, it reduced the starch crystallinity of Yixiangyou 1108 (2.16%), increasing the space between the starch grains and thus, chalkiness. Reducing nitrogen/phosphorus application did not significantly affect the yield and quality of the high-amylose rice but affected that of the high-quality rice with lower amylose contents. Thus, for high-amylose rice created for processing, appropriate chemical fertilizer reduction will not affect their yield and processing demand. PRACTICAL APPLICATIONS: Fertilization with different nitrogen and phosphorus fertilizers will seriously affect rice quality. The rice varieties with low amylose content (AC) could produce high taste quality rice by increasing nitrogen fertilizer and decreasing phosphorus fertilizer. The rice varieties with relatively high ACs should reduce the application of nitrogen/phosphorus fertilizer to appropriately increase AC, which can be used to produce healthy food with high resistant starch.
Collapse
Affiliation(s)
- Guotao Yang
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China.,Rice Research Institute, Sichuan Agriculture University, Chengdu, P.R. China
| | - Youlin Peng
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Rong Liu
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Miao Huang
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Yao Xiao
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Zhiyuan Yang
- Rice Research Institute, Sichuan Agriculture University, Chengdu, P.R. China
| | - Yongjian Sun
- Rice Research Institute, Sichuan Agriculture University, Chengdu, P.R. China
| | - Yungao Hu
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Hong Chen
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, P.R. China
| | - Jun Ma
- Rice Research Institute, Sichuan Agriculture University, Chengdu, P.R. China
| |
Collapse
|
3
|
Gawarecka K, Ahn JH. Isoprenoid-Derived Metabolites and Sugars in the Regulation of Flowering Time: Does Day Length Matter? FRONTIERS IN PLANT SCIENCE 2021; 12:765995. [PMID: 35003159 PMCID: PMC8738093 DOI: 10.3389/fpls.2021.765995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.
Collapse
|
4
|
Fang G, Yang S, Ruan B, Liu C, Zhang A, Jiang H, Ding S, Tian B, Zhang Y, Jahan N, Zhu L, Zhang G, Dong G, Zhang Q, Zeng D, Guo L, Gao Z, Qian Q. Isolation of TSCD11 Gene for Early Chloroplast Development under High Temperature in Rice. RICE (NEW YORK, N.Y.) 2020; 13:49. [PMID: 32681435 PMCID: PMC7367945 DOI: 10.1186/s12284-020-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/08/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplasts are essential for photosynthesis and play key roles in plant development. High temperature affects structure of chloroplasts and metabolism in plants. The seryl-tRNA synthetase plays an important role in translation of proteins. Although seryl-tRNA synthetase has been widely studied in microbes and animals, few studies have reported about its role in chloroplast development under high temperature in rice. RESULTS In this study, we isolated a novel temperature-sensitive chlorophyll-deficient 11 (tscd11) mutant by ethyl methane sulfonate (EMS) mutagenesis of japonica variety Wuyujing7. The tscd11 mutant developed albino leaves at the 3-leaf stage under high temperature (35 °C), but had normal green leaves under low temperature (25 °C). Consistent with the albino phenotype, impaired chloroplasts, decreased chlorophyll content and increased ROS accumulation were found in the tscd11 mutant at 35 °C. Fine mapping and DNA sequencing of tscd11 revealed a missense mutation (G to A) in the eighth exon of LOC_Os11g39670 resulted in amino acid change (Glu374 to Lys374). The TSCD11 gene encodes a seryl-tRNA synthetase localized to chloroplast. Complementation test confirmed that the point mutation in TSCD11 is responsible for the phenotype of tscd11. TSCD11 is highly expressed in leaves. Compared with the wild type (WT), mutation in TSCD11 led to significant alteration in expression levels of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development under high temperature. CONCLUSIONS TSCD11, encoding a seryl-tRNA synthetase localized to chloroplast, is vital to early chloroplast development at high temperature in rice, which help to further study on the molecular mechanism of chloroplast development under high temperature.
Collapse
Affiliation(s)
- Guonan Fang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shenglong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Biao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Noushin Jahan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1215-1225. [PMID: 31854450 PMCID: PMC7031072 DOI: 10.1093/jxb/erz496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/29/2019] [Indexed: 05/06/2023]
Abstract
The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light-the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2-3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term 'etiolation', and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.
Collapse
Affiliation(s)
| | | | - Łucja Kowalewska
- Faculty of Biology, Department of Plant Anatomy and Cytology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
6
|
Musa M, Ayoko GA, Ward A, Rösch C, Brown RJ, Rainey TJ. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019; 8:E851. [PMID: 31394865 PMCID: PMC6721732 DOI: 10.3390/cells8080851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
Microalgae are swift replicating photosynthetic microorganisms with several applications for food, chemicals, medicine and fuel. Microalgae have been identified to be suitable for biofuels production, due to their high lipid contents. Microalgae-based biofuels have the potential to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. However, the present state of technology does not economically support sustainable large-scale production. The biofuel production process comprises the upstream and downstream processing phases, with several uncertainties involved. This review examines the various production and processing stages, and considers the use of chemometric methods in identifying and understanding relationships from measured study parameters via statistical methods, across microalgae production stages. This approach enables collection of relevant information for system performance assessment. The principal benefit of such analysis is the identification of the key contributing factors, useful for decision makers to improve system design, operation and process economics. Chemometrics proffers options for time saving in data analysis, as well as efficient process optimization, which could be relevant for the continuous growth of the microalgae industry.
Collapse
Affiliation(s)
- Mutah Musa
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| | - Godwin A Ayoko
- Environmental Technologies Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia
| | - Andrew Ward
- Queensland Urban Utilities (QUU), Innovation Centre, Main Beach Road Myrtletown QLD 4008, Australia
- Advanced Water Management Centre (AWMC), University of Queensland (UQ), St Lucia, Brisbane, Queensland 4072, Australia
| | - Christine Rösch
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Richard J Brown
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia
| | - Thomas J Rainey
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| |
Collapse
|