1
|
Xi Y, Xu R, Chen S, Fang J, Duan X, Zhang Y, Zhong G, He Z, Guo Y, Li X, Tao W, Li Y, Li Y, Fang L, Niikura Y. TSG101 depletion dysregulates mitochondria and PML NBs, triggering MAD2-overexpressing interphase cell death (MOID) through AIFM1-PML-DAXX pathway. Cell Death Dis 2024; 15:838. [PMID: 39551802 PMCID: PMC11570632 DOI: 10.1038/s41419-024-07229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Overexpression of mitotic arrest deficiency 2 (MAD2/MAD2L1), a pivotal component of the spindle assembly checkpoint (SAC), resulted in many types of cancer. Here we show that the depletion of tumor susceptibility gene 101 (TSG101), causes synthetic dosage lethality (SDL) in MAD2-overexpressing cells, and we term this cell death MAD2-overexpressing interphase cell death (MOID). The induction of MOID depends on PML and DAXX mediating mitochondrial AIFM1-release. MAD2, TSG101, and AIF-PML-DAXX axis regulate mitochondria, PML nuclear bodies (NBs), and autophagy with close inter-dependent protein stability in survival cells. Loss of C-terminal phosphorylation(s) of TSG101 and closed (C-)MAD2-overexpression contribute to induce MOID. In survival cells, both MAD2 and TSG101 localize at PML NBs in interphase, and TSG101 Y390 phosphorylation is required for localization of TSG101 to PML NBs. PML release from PML NBs through PML deSUMOylation contributes to induce MOID. The post-transcriptional/translational cell death machinery and the non-canonical transcriptional regulation are intricately linked to MOID, and ER-MAM, may serve as a crucial intersection for MOID signaling.
Collapse
Affiliation(s)
- Yao Xi
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Rui Xu
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Shengnan Chen
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Jiezhu Fang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xiang Duan
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yidan Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Guoli Zhong
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Zhifei He
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Wenzhi Tao
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yang Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| | - Yohei Niikura
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
2
|
Liu J, Ma R, Chen S, Lai Y, Liu G. Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clin Transl Oncol 2024; 26:1170-1186. [PMID: 37989822 DOI: 10.1007/s12094-023-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, No. 1278 Baode Road, Shanghai, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
3
|
Galindo A, Javier-Reyna R, García-Rivera G, Bañuelos C, Chávez-Munguía B, Salazar-Villatoro L, Orozco E. EhVps23, an ESCRT-I Member, Is a Key Factor in Secretion, Motility, Phagocytosis and Tissue Invasion by Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:835654. [PMID: 35360117 PMCID: PMC8964110 DOI: 10.3389/fcimb.2022.835654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
The EhVps23 protein, an orthologue of the yeast Vps23 and the mammalian TSG101 proteins, is the single member of the ESCRT-I complex of Entamoeba histolytica identified and characterized until now. EhVps23 actively participates in vesicular trafficking and phagocytosis, which influence several cellular events. In this paper, we investigated the role of EhVps23 in virulence-related functions, including the invasive capacity of trophozoites, using transfected trophozoites. Trophozoites overexpressing the EhVps23 protein (Neo-EhVps23) presented helical arrangements in the cytoplasm, similar to the ones formed by EhVps32 for scission of vesicles. By confocal and transmission electron microscopy, EhVps23 was detected in multivesicular bodies, vesicles, and the extracellular space. It was secreted in vesicles together with other proteins, including the EhADH adhesin. Probably, these vesicles carry molecules that participate in the prey capture or in cell-cell communication. Mass spectrometry of precipitates obtained using α-EhVps23 antibodies, evidenced the presence of proteins involved in motility, phagocytosis, vesicular trafficking and secretion. The study of cellular functions, revealed that Neo-EhVps23 trophozoites exhibit characteristics similar to those described for mammalian transformed cells: they grew 50% faster than the control; presented a significant higher rate of phagocytosis, and migrated five-fold faster than the control, in concordance with the low rate of migration exhibited by Ehvps23-knocked down trophozoites. In addition, Neo-EhVps23 trophozoites produced dramatic liver abscesses in experimental animals. In conclusion, our results showed that EhVps23 overexpression gave to the trophozoites characteristics that resemble cancer cells, such as increased cell proliferation, migration, and invasion. The mutant that overexpresses EhVps23 can be a good study model to explore different events related to the transformation of malignant cells.
Collapse
Affiliation(s)
- Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
- *Correspondence: Esther Orozco,
| |
Collapse
|
4
|
Chua HH, Kameyama T, Mayeda A, Yeh TH. Epstein-Barr Virus Enhances Cancer-Specific Aberrant Splicing of TSG101 Pre-mRNA. Int J Mol Sci 2022; 23:ijms23052516. [PMID: 35269659 PMCID: PMC8910672 DOI: 10.3390/ijms23052516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor viruses gain control of cellular functions when they infect and transform host cells. Alternative splicing is one of the cellular processes exploited by tumor viruses to benefit viral replication and support oncogenesis. Epstein-Barr virus (EBV) participates in a number of cancers, as reported mostly in nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL). Using RT-nested-PCR and Northern blot analysis in NPC and BL cells, here we demonstrate that EBV promotes specific alternative splicing of TSG101 pre-mRNA, which generates the TSG101∆154-1054 variant though the agency of its viral proteins, such as EBNA-1, Zta and Rta. The level of TSG101∆154-1054 is particularly enhanced upon EBV entry into the lytic cycle, increasing protein stability of TSG101 and causing the cumulative synthesis of EBV late lytic proteins, such as VCA and gp350/220. TSG101∆154-1054-mediated production of VCA and gp350/220 is blocked by the overexpression of a translational mutant of TSG101∆154-1054 or by the depletion of full-length TSG101, which is consistent with the known role of the TSG101∆154-1054 protein in stabilizing the TSG101 protein. NPC patients whose tumor tissues express TSG101∆154-1054 have high serum levels of anti-VCA antibodies and high levels of viral DNA in their tumors. Our findings highlight the functional importance of TSG101∆154-1054 in allowing full completion of the EBV lytic cycle to produce viral particles. We propose that targeting EBV-induced TSG101 alternative splicing has broad potential as a therapeutic to treat EBV-associated malignancies.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
| | - Toshiki Kameyama
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Correspondence: (A.M.); (T.-H.Y.)
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Correspondence: (A.M.); (T.-H.Y.)
| |
Collapse
|
5
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
6
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
7
|
Otani Y, Fujita KI, Kameyama T, Mayeda A. The Exon Junction Complex Core Represses Cancer-Specific Mature mRNA Re-splicing: A Potential Key Role in Terminating Splicing. Int J Mol Sci 2021; 22:ijms22126519. [PMID: 34204574 PMCID: PMC8234774 DOI: 10.3390/ijms22126519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Using TSG101 pre-mRNA, we previously discovered cancer-specific re-splicing of mature mRNA that generates aberrant transcripts/proteins. The fact that mRNA is aberrantly re-spliced in various cancer cells implies there must be an important mechanism to prevent deleterious re-splicing on the spliced mRNA in normal cells. We thus postulated that mRNA re-splicing is controlled by specific repressors, and we searched for repressor candidates by siRNA-based screening for mRNA re-splicing activity. We found that knock-down of EIF4A3, which is a core component of the exon junction complex (EJC), significantly promoted mRNA re-splicing. Remarkably, we could recapitulate cancer-specific mRNA re-splicing in normal cells by knock-down of any of the core EJC proteins, EIF4A3, MAGOH, or RBM8A (Y14), implicating the EJC core as the repressor of mRNA re-splicing often observed in cancer cells. We propose that the EJC core is a critical mRNA quality control factor to prevent over-splicing of mature mRNA.
Collapse
Affiliation(s)
- Yuta Otani
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.O.); (K.-i.F.)
- Laboratories of Discovery Research, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Kyoto, Japan
| | - Ken-ichi Fujita
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.O.); (K.-i.F.)
| | - Toshiki Kameyama
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.O.); (K.-i.F.)
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Correspondence: (T.K.); (A.M.)
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.O.); (K.-i.F.)
- Correspondence: (T.K.); (A.M.)
| |
Collapse
|
8
|
Knockdown of ANXA10 inhibits proliferation and promotes apoptosis of papillary thyroid carcinoma cells by down-regulating TSG101 thereby inactivating the MAPK/ERK signaling pathway. J Bioenerg Biomembr 2021; 53:429-440. [PMID: 34032966 DOI: 10.1007/s10863-021-09902-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023]
Abstract
Annexin A10 (ANXA10) is a member of annexin A and has been reported to highly express in papillary thyroid carcinoma (PTC) tissues. Tumor susceptibility gene 101 (TSG101) also plays a role in PTC and is predicted to bind to ANXA10. This study intended to investigate whether ANXA10 could regulate PTC via binding to ANXA10. The expression of ANXA10 and TSG101 in normal thyroid follicular epithelial cell line and several PTC cell lines was analyzed using RT-qPCR and western blotting assays. Subsequently, PTC cell line BCPAP was silenced with ANXA10 followed by TSG101 overexpression or not, and then cell proliferation, apoptosis and mitogen-activated protein kinase (MAPK) signaling expression were assessed via MTT, colony formation, immunofluorescence staining, Tunel staining and western blotting assays. Besides, the interaction between ANXA10 and TSG101 was validated using Co-immunoprecipitation assay. ANXA10 and TSG101 expressions were up-regulated in PTC cell lines. ANXA10 silence inhibited proliferation, promoted apoptosis and inactivated MAPK/ extracellular regulated protein kinases (ERK) signaling pathway of BCPAP cells. Additionally, ANXA10 could bind to TSG101 and regulate its expression. However, the above effects of ANXA10 silence on BCPAP cells were all blocked by TSG101 overexpression. ANXA10 inhibited proliferation and promoted apoptosis of PTC cells via binding to TSG101, and these actions may depend on down-regulating MAPK/ERK pathway expression.
Collapse
|
9
|
Gheytanchi E, Saeednejad Zanjani L, Ghods R, Abolhasani M, Shahin M, Vafaei S, Naseri M, Fattahi F, Madjd Z. High expression of tumor susceptibility gene 101 (TSG101) is associated with more aggressive behavior in colorectal carcinoma. J Cancer Res Clin Oncol 2021; 147:1631-1646. [PMID: 33616717 DOI: 10.1007/s00432-021-03561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Identification of genetic determinants such as exosomal content that drives progression and metastasis of colorectal cancer (CRC) has received considerable attention. The present study aims to identify a suitable biomarker in CRC tissues and exosomes based on bioinformatics data to evaluate its expression patterns in CRC tissues as well as its clinicopathological significance. MATERIALS AND METHODS Protein-protein interaction (PPI) network and enrichment analysis were applied to identify up-regulated genes that contributed in CRC exosomes to select the marker. The expression patterns and clinical significance of selected exosomal marker were evaluated in tissue microarrays (TMAs) of 445 CRC tumors and 39 adjacent normal tissues using immunohistochemistry method. RESULTS Based on bioinformatics data, TSG101 gene was prominent amongst the tumor tissues and exosomes. Expression of TSG101 was significantly up-regulated in tumor cells compared to adjacent normal tissues (p-value = 0.04). Moreover, higher expressions of TSG101 (cytoplasmic and nuclear) were significantly associated with tumor differentiation (p-value = 0.042) and distant metastasis (p-value = 0.027). A significant association was found in the cytoplasmic expression of TSG101 between well and moderate tumor differentiation (p-value = 0.005) as well as moderate and poor differentiation (p-value = 0.050). CONCLUSION These findings indicate that the exploration of crosstalk between exosome content and CRC may be valuable for the development of novel exosomal biomarkers. Increased expression of TSG101, as a promising exosome marker, is more associated with more aggressive tumor behaviors, metastasis, and progression of CRC, which paves the way for therapeutic strategies and CRC management. However, further investigations are warranted to clarify the molecular mechanisms of TSG101 in CRC.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Roya Ghods
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Shahin
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
TSG101 Promotes the Proliferation, Migration, and Invasion of Human Glioma Cells by Regulating the AKT/GSK3β/β-Catenin and RhoC/Cofilin Pathways. Mol Neurobiol 2021; 58:2118-2132. [PMID: 33411238 DOI: 10.1007/s12035-020-02231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion. Publicly available data revealed that TSG101 mRNA was significantly upregulated in glioma tissues, and high levels of TSG101 were associated with poor prognosis in glioma patients. Western blot and immunohistochemistry experiments further showed that the expression level of TSG101 protein was significantly upregulated in glioma patients, especially in the patients with high-grade glioma. The functional studies showed that knockdown of TSG101 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression of TSG101 facilitated them. Mechanistic studies indicated that the proliferation, migration, and invasion induced by TSG101 in human glioma were related to AKT/GSK3β/β-catenin and RhoC/Cofilin signaling pathways. In conclusion, the above results suggest that the expression of TSG101 is elevated in glioma patients, which accelerates the proliferation, migration, and invasion of glioma cells by regulating the AKT/GSK3β/β-catenin and RhoC/Cofilin pathways.
Collapse
|
11
|
Chen C, Shan H. Keratin 6A gene silencing suppresses cell invasion and metastasis of nasopharyngeal carcinoma via the β‑catenin cascade. Mol Med Rep 2019; 19:3477-3484. [PMID: 30896882 PMCID: PMC6471251 DOI: 10.3892/mmr.2019.10055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/01/2019] [Indexed: 01/16/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. This study aimed to study the mechanisms of ectopic keratin 6A (KRT6A) in NPC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to detect KRT6A levels in NPC cell lines (C666-1, 5-8F and SUNE-1) and a nasopharyngeal epithelial cell line (NP69, as a control). After SUNE-1 NPC cells had been silenced by KRT6A, cell viability, metastasis and invasion were determined using Cell Counting Kit-8, wound healing and Transwell assays, respectively. KRT6A levels, metastasis-associated factors and the Wnt/β-catenin pathway were measured using RT-qPCR and western blotting. It was demonstrated that KRT6A was upregulated in all detected NPC cells, among which KRT6A was the highest in SUNE-1 cells. In SUNE-1 cells, cell viability was inhibited at 24 and 48 h, and that cell metastasis and invasion were demonstrated to be suppressed by KRT6A silencing. Both the mRNA and protein levels of KRT6A, matrix metalloproteinase (MMP)-2, MMP-9, β-catenin, lymphoid enhancer binding factor 1 and T-cell specific factor 4 were reduced in the small interfering (si)KRT6A group. However, the results demonstrated that the levels of epithelial-cadherin and tissue inhibitor of metalloproteinase-2 (TIMP-2) were promoted in the siKRT6A group. The activation of the Wnt/β-catenin pathway by lithium chloride reversed the effect of si-KRT6A by modulating the expression of MMP-2/9 and TIMP2. It was observed that KRT6A silencing suppressed cell invasion and metastasis of NPC via the β-catenin cascade. Together these results provide important insights into a novel approach for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Chuanjun Chen
- Oncology Department, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| | - Huiguo Shan
- Oncology Department, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|