1
|
Su C, Cheng CY, Rong Z, Yang JC, Li ZM, Yao JY, Liu A, Yang L, Zhao MG. Repurposing fluphenazine as an autophagy modulator for treating liver cancer. Heliyon 2023; 9:e22605. [PMID: 38107270 PMCID: PMC10724577 DOI: 10.1016/j.heliyon.2023.e22605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a low early diagnosis rate. Owing to the side effects, tolerance, and patient contraindications of existing therapies, effective drug treatments for HCC remain a major clinical challenge. However, using approved or investigational drugs not initially intended for cancer therapy is a promising strategy for resolving this problem because their safety have been tested in clinic. Therefore, this study evaluated differentially expressed genes between liver cancer and normal tissues in a cohort of patients with HCC from The Cancer Genome Atlas and applied them to query a connectivity map to identify candidate anti-HCC drugs. As a result, fluphenazine was identified as a candidate for anti-HCC therapy in vitro and in vivo. Fluphenazine suppressed HCC cell proliferation and migration and induced cell cycle arrest and apoptosis, possibly owing to disrupted lysosomal function, blocking autophagy flux. Additionally, in vivo studies demonstrated that fluphenazine suppresses HCC subcutaneous xenografts growth without causing severe side effects. Strikingly, fluphenazine could be used as an analgesic to alleviate oxaliplatin-induced pain as well as pain related anxiety-like behavior. Therefore, fluphenazine could be a novel liver cancer treatment candidate.
Collapse
Affiliation(s)
- Chang Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Shaanxi Provincial Corps, Chinese People's Armed Police Force, Xi'an, China
| | - Cai-yan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Jing-cheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Zhi-mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jing-yue Yao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Ming-gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
3
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
4
|
Błaszczyk M, Kozioł A, Palko-Łabuz A, Środa-Pomianek K, Wesołowska O. Modulators of cellular cholesterol homeostasis as antiproliferative and model membranes perturbing agents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184163. [PMID: 37172710 DOI: 10.1016/j.bbamem.2023.184163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Cholesterol is an important component of mammalian cell membranes affecting their fluidity and permeability. Together with sphingomyelin, cholesterol forms microdomains, called lipid rafts. They play important role in signal transduction forming platforms for interaction of signal proteins. Altered levels of cholesterol are known to be strongly associated with the development of various pathologies (e.g., cancer, atherosclerosis and cardiovascular diseases). In the present work, the group of compounds that share the property of affecting cellular homeostasis of cholesterol was studied. It contained antipsychotic and antidepressant drugs, as well as the inhibitors of cholesterol biosynthesis, simvastatin, betulin, and its derivatives. All compounds were demonstrated to be cytotoxic to colon cancer cells but not to non-cancerous cells. Moreover, the most active compounds decreased the level of free cellular cholesterol. The interaction of drugs with raft-mimicking model membranes was visualized. All compounds reduced the size of lipid domains, however, only some affected their number and shape. Membrane interactions of betulin and its novel derivatives were characterized in detail. Molecular modeling indicated that high dipole moment and significant lipophilicity were characteristic for the most potent antiproliferative agents. The importance of membrane interactions of cholesterol homeostasis-affecting compounds, especially betulin derivatives, for their anticancer potency was suggested.
Collapse
Affiliation(s)
- Maria Błaszczyk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Agata Kozioł
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland.
| | - Anna Palko-Łabuz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| |
Collapse
|
5
|
Wang X, Song Y, Yu L, Xue X, Pang M, Li Y, Luo X, Hua Z, Lu C, Lu A, Liu Y. Co-Delivery of Hesperetin and Cisplatin via Hyaluronic Acid-Modified Liposome for Targeted Inhibition of Aggression and Metastasis of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34360-34377. [PMID: 37432741 DOI: 10.1021/acsami.3c03233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Having no specific therapy for triple-negative breast cancer (TNBC), this subtype has the lowest survival rate and highest metastatic risk of breast cancer since the tumor inflammatory microenvironment mainly accounts for heterogeneity-induced insensitivity to chemotherapy and epithelial-mesenchymal transition (EMT). This study reports hyaluronic acid (HA)-modified liposomes loaded with cisplatin (CDDP) and hesperetin (Hes) (CDDP-HA-Lip/Hes) for active targeting to relieve systematic toxicity and effective anti-tumor/anti-metastasis ability of TNBC. Our results revealed that HA modification promoted the cellular uptake of the synthesized CDDP-HA-Lip/Hes nanoparticles in MDA-MB-231 cells and accumulation in tumor sites in vivo, indicating deeper tumor penetration. Importantly, CDDP-HA-Lip/Hes inhibited the PI3K/Akt/mTOR pathway to alleviate the inflammation in the tumor and with a crosstalk to suppress the process of the EMT, increasing the chemosensitivity and inhibiting tumor metastasis. Meanwhile, CDDP-HA-Lip/Hes could significantly inhibit the aggression and metastasis of TNBC with less side effects on normal tissues. Overall, this study provides a tumor-targeting drug delivery system with great potential for treating TNBC and its lung metastasis robustly.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
6
|
Kumar A, Vigato C, Boschi D, Lolli ML, Kumar D. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. Eur J Med Chem 2023; 254:115337. [PMID: 37060756 DOI: 10.1016/j.ejmech.2023.115337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Cancer is a leading cause of death worldwide and there are still limited options for cure. Chemotherapy is the most significant treatment for cancer which increased survival rates, despite this, it is associated with numerous side effects, as well as cancer relapsing due to drug resistance insurgence; consequently, it is still a challenging task to develop new potent and less toxic anti-cancer agents for patients' care. Phenothiazine moiety, which leads a class of well-known antipsychotic drugs, possesses a wide range of biological activities and has been also introduced in cancer chemotherapy. This review aims in disclosing the use of phenothiazines during the last five years for the development of different anti-cancer drug candidates. The design and the synthetic strategies adopted, the SAR investigations and the role of reviewed phenothiazine derivatives as anti-cancer agents and multi-drug resistance (MDR) reversals are here fully described and discussed.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Chiara Vigato
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
7
|
Dong L, Wen S, Tang Y, Li F, He Y, Deng Y, Tao Z. Atorvastatin attenuates allergic inflammation by blocking prostaglandin biosynthesis in rats with allergic rhinitis. Int Immunopharmacol 2023; 115:109681. [PMID: 36634416 DOI: 10.1016/j.intimp.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prostaglandins (PGs) are bioactive lipid mediators derived from the nuclear and plasma membranes via the cyclooxygenase (COX) pathway of arachidonic acid (AA) metabolism. PGs bridge the interactions between various immunomodulatory cells in allergic rhinitis (AR) and are considered key players in regulating pro-inflammatory and anti-inflammatory responses. AA conversion to PGs involves rate-limiting enzymes that may be blocked by statins. The mechanisms by which statins regulate these enzymes in AR remain unclear. We investigated the effects of oral atorvastatin on PGs production in AR. METHODS An ovalbumin-induced AR rat model was constructed and the changes in nasal symptom score and nasal mucosa histopathological characteristics of AR rats under different atorvastatin doses were assessed. qRT-PCR, western blotting, and immunofluorescence were used to detect the mRNA and protein expression levels of rate-limiting enzymes and downstream molecules of AA metabolism in the nasal mucosa and liver. RESULTS Oral atorvastatin significantly alleviated symptoms and eosinophil infiltration in the nasal mucosa, inhibited goblet cell hyperplasia and mast cell recruitment, and decreased mucus secretion in AR rats. Increasing atorvastatin dose increased the anti-inflammatory effects. High-dose atorvastatin inhibited upregulation of the inflammatory mediator PGD2 in the nasal mucosa of AR rats. Compared to the control group, the mRNA and protein expression of the rate-limiting enzymes COX-2, PGDS, and PGES in AA metabolism in the AR group were upregulated but downregulated after the oral administration of high-dose atorvastatin. Atorvastatin also showed dose-dependent inhibition of ERK1/2 and downstream NF-κB phosphorylation in the nasal mucosa and liver of AR rats. CONCLUSIONS Atorvastatin inhibited allergic inflammation and attenuated AR nasal symptoms by downregulating PGD2 and rate-limiting enzyme expression in PGD2 biosynthesis, possibly by blocking the RAS/ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
8
|
Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics (Basel) 2023; 12:antibiotics12010137. [PMID: 36671340 PMCID: PMC9855052 DOI: 10.3390/antibiotics12010137] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle in the therapy of infectious diseases and cancer. One of the major mechanisms of MDR is the overexpression of efflux pumps (EPs) that are responsible for extruding antimicrobial and anticancer agents. EPs have additional roles of detoxification that may aid the development of bacterial infection and the progression of cancer. Therefore, targeting EPs may be an attractive strategy to treat bacterial infections and cancer. The development and discovery of a new drug require a long timeline and may come with high development costs. A potential alternative to reduce the time and costs of drug development is to repurpose already existing drugs. Antidepressants and antipsychotic agents are widely used in clinical practice in the treatment of psychiatric disorders and some somatic diseases. Antidepressants and antipsychotics have demonstrated various beneficial activities that may be utilized in the treatment of infections and cancer. This review aims to provide a brief overview of antibacterial and anticancer effects of selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs) and phenothiazine antipsychotics, while focusing on EPs. However, it should be noted that the antimicrobial activity of a traditionally non-antibiotic drug may have clinical implications regarding dysbiosis and bacterial MDR.
Collapse
|
9
|
Zhou H, Chen J, Fan M, Cai H, Dong Y, Qiu Y, Zhuang Q, Lei Z, Li M, Ding X, Yan P, Lin A, Zheng S, Yan Q. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:5. [PMID: 36600258 DOI: 10.1186/s13046-022-02562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a multifactor-driven malignant tumor with rapid progression, which causes the difficulty to substantially improve the prognosis of HCC. Limited understanding of the mechanisms in HCC impedes the development of efficacious therapies. Despite Krüpple-Like factors (KLFs) were reported to be participated in HCC pathogenesis, the function of KLF14 in HCC remains largely unexplored. METHODS We generated KLF14 overexpressed and silenced liver cancer cells, and nude mouse xenograft models for the in vitro and in vivo study. Luciferase reporter assay, ChIP-qPCR, Co-IP, immunofluorescence were performed for mechanism research. The expression of KLF14 in HCC samples was analyzed by quantitative RT-PCR, Western blotting, and immunohistochemistry (IHC) analysis. RESULTS KLF14 was significantly downregulated in human HCC tissues, which was highly correlated with poor prognosis. Inhibition of KLF14 promoted liver cancer cells proliferation and overexpression of KLF14 suppressed cells growth. KLF14 exerts its anti-tumor function by inhibiting Iron-responsive element-binding protein 2 (IRP2), which then causes transferrin receptor-1(TfR1) downregulation and ferritin upregulation on the basis of IRP-IREs system. This then leading to cellular iron deficiency and HCC cells growth suppression in vitro and in vivo. Interestingly, KLF14 suppressed the transcription of IRP2 via recruiting SIRT1 to reduce the histone acetylation of the IRP2 promoter, resulting in iron depletion and cell growth suppression. More important, we found fluphenazine is an activator of KLF14, inhibiting HCC cells growth through inducing iron deficiency. CONCLUSION KLF14 acts as a tumor suppressor which inhibits the proliferation of HCC cells by modulating cellular iron metabolism via the repression of IRP2. We identified Fluphenazine, as an activator of KLF14, could be a potential compound for HCC therapy. Our findings therefore provide an innovative insight into the pathogenesis of HCC and a promising therapeutic target.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Mingjie Fan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Huajian Cai
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yufei Dong
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yue Qiu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qianqian Zhuang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhaoying Lei
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Mengyao Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xue Ding
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifu Lin
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China. .,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
10
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
11
|
Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Discov Today 2021; 27:165-184. [PMID: 34592446 DOI: 10.1016/j.drudis.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
The drug development process, especially of antineoplastic agents, has become increasingly costly and ineffective. Drug repurposing and drug combination are alternatives to de novo drug development, being low cost, rapid, and easy to apply. These strategies allow higher efficacy, decreased toxicity, and overcoming of drug resistance. The combination of antineoplastic agents is already being applied in cancer therapy, but the combination of repurposed drugs is still under-explored in pre- and clinical development. In this review, we provide a set of pharmacological concepts focusing on drug repurposing for treating colorectal cancer (CRC) and that are relevant for the application of new drug combinations against this disease.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
12
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
13
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
14
|
Otręba M, Kośmider L. In vitro anticancer activity of fluphenazine, perphenazine and prochlorperazine. A review. J Appl Toxicol 2020; 41:82-94. [PMID: 32852120 DOI: 10.1002/jat.4046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Drug repositioning is an approach that could accelerate the clinical use of compounds in different diseases. The goal is to take advantage of the fact that approved drugs have been tested on humans and detailed information is available on their pharmacology, toxicity and formulation. It can significantly reduce the costs and time needed to implement necessary therapies on the market. In recent years, phenothiazines are being tested for cancer, viral, bacterial, fungal and other diseases. Most research focuses on chlorpromazine as a model drug in this class, but other drugs such as fluphenazine, perphenazine and prochlorperazine have been proven to inhibit the viability of different cancer cell lines. In this study, we performed an extensive literature search to find and summarize all papers on the chosen phenothiazines and their potential in treating different types of cancerin vitro for further animal/clinical trials. Fluphenazine, perphenazine and prochlorperazine possess anticancer activity towards different types of human cancer. The antitumor activity is mainly mediated by an effect of the drugs on the cell cycle, proliferation or apoptosis. Possible molecular targets of phenothiazine derivatives are the drug's efflux pumps (ABCB1 and P-glycoprotein) and two parallel pathways (AKT and Wnt) regulated by the D2 receptor antagonists. The drugs have the potential to reduce the viability of human cancer cell lines, fragment the DNA, stimulate apoptosis, inhibit cell migration and invasiveness as well as impair the production of reactive oxygen species. In addition, due to the sedative and antiemetic properties antipsychotics can be used as an adjuvant for the treatment of chemotherapy side effects.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| |
Collapse
|
15
|
Indomethacin-grafted and pH-sensitive dextran micelles for overcoming inflammation-mediated multidrug resistance in breast cancer. Carbohydr Polym 2020; 237:116139. [DOI: 10.1016/j.carbpol.2020.116139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
|