1
|
Liu H, Cai G, Yuan S, Zhou X, Gui R, Huang R. Platelet Membrane-Camouflaged Silver Metal-Organic Framework Biomimetic Nanoparticles for the Treatment of Triple-Negative Breast Cancer. Mol Pharm 2024; 21:3577-3590. [PMID: 38857525 DOI: 10.1021/acs.molpharmaceut.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by high malignancy and limited treatment options. Given the pressing need for more effective treatments for TNBC, this study aimed to develop platelet membrane (PM)-camouflaged silver metal-organic framework nanoparticles (PM@MOF-Ag NPs), a biomimetic nanodrug. PM@MOF-Ag NP construction involved the utilization of 2-methylimidazole and silver nitrate to prepare silver metal-organic framework (MOF-Ag) NPs. The PM@MOF-Ag NPs, due to their camouflage, possess excellent blood compatibility, immune escape ability, and a strong affinity for 4T1 tumor cells. This enhances their circulation time in vivo and promotes the aggregation of PM@MOF-Ag NPs at the 4T1 tumor site. Importantly, PM@MOF-Ag NPs demonstrated promising antitumor activity in vitro and in vivo. We further revealed that PM@MOF-Ag NPs induced tumor cell death by overproducing reactive oxygen species and promoting cell apoptosis. Moreover, PM@MOF-Ag NPs enhanced apoptosis by upregulating the ratios of Bax/Bcl-2 and cleaved caspase3/pro-caspase3. Notably, PM@MOF-Ag NPs exhibited no significant organ toxicity, whereas the administration of MOF-Ag NPs resulted in liver inflammation compared to the control group.
Collapse
Affiliation(s)
- Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410013, P. R. China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Xionghui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
2
|
Datta N, Jinan T, Wong SY, Chakravarty S, Li X, Anwar I, Arafat MT. Self-assembled sodium alginate polymannuronate nanoparticles for synergistic treatment of ophthalmic infection and inflammation: Preparation optimization and in vitro/vivo evaluation. Int J Biol Macromol 2024; 262:130038. [PMID: 38336323 DOI: 10.1016/j.ijbiomac.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.
Collapse
Affiliation(s)
- Nondita Datta
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Tohfatul Jinan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | | | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
| |
Collapse
|
3
|
Mohamed MR, Osman SA, Hassan AA, Raafat AI, Refaat MM, Fathy SA. Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats. Int J Immunopathol Pharmacol 2024; 38:3946320241263352. [PMID: 39046434 PMCID: PMC11271163 DOI: 10.1177/03946320241263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/02/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Soheir A Osman
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Refaat
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Lu Y, Shi Y, Wu Q, Sun X, Zhang WZ, Xu XL, Chen W. An Overview of Drug Delivery Nanosystems for Sepsis-Related Liver Injury Treatment. Int J Nanomedicine 2023; 18:765-779. [PMID: 36820059 PMCID: PMC9938667 DOI: 10.2147/ijn.s394802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
Collapse
Affiliation(s)
- Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Sun
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei-Zhen Zhang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China,Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Wei Chen, ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, People’s Republic of China, Tel +86-21-64385700-3522, Email
| |
Collapse
|
5
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
6
|
Alyami NM, Alyami HM, Almeer R. Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: an in vitro study using hepatocellular carcinoma (HepG2). Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe ongoing loss of human life owing to various forms of cancer necessitates the development of a more effective/honorable therapeutic approach. Moreover, finding a novel green-synthesized anti-cancer therapy is vital because of the induced drug resistance against the commonly used drugs. Collecting the advantage of the nanometer size of nanoparticles with the biosafety of plant-based substances might potentiate the anticancer effect with minimal toxic effect. In the current study, we aimed to green-synthesize using kaempferol (flavonoid) as a coating the silver nanoparticles (AgNPs) and investigated their anti-cancer activity in hepatocellular carcinoma (HepG2) cell line. First of all, kaempferol-coated AgNPs characters were well-defined using Fourier transmission infrared (FTIR), X-ray diffraction (XRD), zetasizer, and transmission electron microscopy (TEM). The results showed their 200 nm size, spherical shape, less aggregation with high stability characteristics. Then, the cytotoxic effect of both 1/3 and 1/2 LC50 of AgNPs, and doxorubicin (DOX, anticancer drug) on HepG2 cells was evaluated by dimethylthiazolyltetrazolium bromide (MTT) assay and release of lactate dehydrogenase (LDH) leakage percent. Reactive oxygen species (ROS) and apoptotic markers were also analyzed, along with the migration and invasion of HepG2 cells were recorded. Our findings showed that kaempferol-coated AgNPs could induce cytotoxic effects and reduce the viability of HepG2 cells in a concentration-dependent manner. LDH leakage % was significantly increased in cells treated with kaempferol-coated AgNPs confirming their cytotoxic effect. ROS generation and lipid peroxidation could significantly increase in HepG2 cells treated with kaempferol-coated AgNPs along with the exhaustion of antioxidant Glutathione (GSH) marker revealing the induced oxidative damage. Oxidative damage-mediated apoptosis was confirmed by the elevated levels of the pro-apoptotic markers (Bax, Cyt-c, P53, and caspase-3) and the reduced level of anti-apoptotic marker (Bcl-2) using enzyme-linked immunosorbent assay (ELISA). Furthermore, kaempferol-coated AgNPs could suppress the migrating and invading ability of HepG2 cells showing their antimetastatic effect. To end up, kaempferol-coated AgNPs can induce a potential anti-cancer effect in HepG2 cells via oxidative stress-mediated apoptosis.
Collapse
|
7
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
8
|
Güzel D, Güneş M, Yalçın B, Akarsu E, Rencüzoğulları E, Kaya B. Genotoxic potential of different nano-silver halides in cultured human lymphocyte cells. Drug Chem Toxicol 2022:1-13. [PMID: 35801365 DOI: 10.1080/01480545.2022.2096056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most antibacterial applications in nanotechnology are carried out using silver nanoparticles (AgNPs). However, there is a dearth of information on the biological effects of AgNPs on human blood cells. In this study, the cytotoxic and genotoxic potentials of ionic silver (Ag+), AgNP, silver bromide (AgBr), silver chloride (AgCl), and silver iodide (AgI) were evaluated through chromosome aberration (CA) test and cytokinesis-blocked micronucleus (CBMN) test in human cultured lymphocytes in vitro. Furthermore, the potential damages that can cause to DNA were evaluated through alkaline single cell gel electrophoresis (Comet) assay on isolated lymphocytes. The results showed that AgNPs exerted cytotoxic effects by reducing the cytokinesis-block proliferation index and mitotic index at 24 and 48 h. AgNPs also increased micronucleus (MN) formation at both exposure times in the cultured cells. Meanwhile, AgCl had no genotoxic effects on the human lymphocyte cultured cells but had a cytotoxic effect at high doses. AgNP, Ag+, AgBr, and AgI caused substantial DNA damage by forming DNA strand breaks. They may also have clastogenic, genotoxic and cytotoxic effects on human lymphocyte cells. Based on the foregoing findings, silver nanomaterials may have genotoxic and cytotoxic potentials on human peripheral lymphocytes in vitro.
Collapse
Affiliation(s)
- Devrim Güzel
- Department of Biology, Adıyaman University, Adıyaman, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Esin Akarsu
- Department of Chemistry, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Lu B, Jan Hendriks A, Nolte TM. A generic model based on the properties of nanoparticles and cells for predicting cellular uptake. Colloids Surf B Biointerfaces 2022; 209:112155. [PMID: 34678608 DOI: 10.1016/j.colsurfb.2021.112155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Nanoparticles (NPs) are widely used in industry and technology due to their small size and versatility, which makes them easy to enter organisms and pose threats to human and ecological health. Given the particularity and complex structure of NPs, statistical models alone cannot reliably predict uptake. Hence, we developed a generic model for predicting the cellular uptake of NPs with organic coatings, based on physicochemical interactions underlying uptake. The model utilized the concentration, experimental conditions and properties of NPs viz. size, surface coating and coverage. These parameters were converted to surface energy components and surface potentials, and combined with the components and potential for a cell membrane. For NPs uptake, we constructed energetic profiles and barriers for adsorption and permeation onto/through cell membranes. The relationships derived were compared to experimental uptake data. The model provided accurate and robust uptake estimates for neutrally charged unhalogenated NPs and six different cell types. We envision that the model provides a reference for cellular accumulation of neutral NPs and (ecological/human) risk assessment of NPs or microparticles.
Collapse
Affiliation(s)
- Bingqing Lu
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands.
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
10
|
Bilgic E, Tuncel N, Koca T. Radio-sensitivity on MCF-7 cells of silver nanoparticles synthesized by Silybum marianum. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1987460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Erdi Bilgic
- Vocational School of Health Sciences, Department of Medical Services and Techniques, Istanbul Gelisim University, Istanbul, Turkey
| | - Nina Tuncel
- Faculty of Science, Department of Physics, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, Turkey
| | - Timur Koca
- Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
12
|
Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2035-2046. [PMID: 34012256 PMCID: PMC8128348 DOI: 10.2147/dddt.s310760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Introduction Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of malignancies, more metastases, and generally poor prognosis for the patient. The research sought to assess the effect of silver nanoparticles reduced with ethyl cellulose polymer (AgNPs-EC) on TNF-α expression in MCF-7 human breast cancer cells. Methods The AgNPs-EC were produced using the green synthesis reduction method, and their formation was proofed via UV–VIS spectroscopy. Furthermore, AgNPs-EC were characterized for their size, charge, morphology, Ag ion release, and stability. The MCF-7 cells were treated with AgNPs-EC. Then, the expression of TNF-α genes was determined through PCR in real time, and protein expression was studied using ELISA. Results The AgNPs-EC were spherical with an average size of 150±5.1 nm and a zeta-potential of −41.4±0.98 mV. AgNPs-EC had an inhibitory effect on cytokine mRNA and protein expression levels, which suggests that they could be used safely in the fight against cancer. AgNPs-EC cytotoxicity was also found to be non-toxic to MCF-7. Conclusion Our data determined AgNPs-EC as a novel inhibitor of TNF-α production. These results are promising for developing novel therapeutic approaches for the future treatment of cancer with safe materials.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, AlQassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City, Egypt
| |
Collapse
|
13
|
Chen Z, Yang X, Zhou Y, Liang Z, Chen C, Han C, Cao X, He W, Zhang K, Qin A, Zhou T, Zhao J. Dehydrocostus Lactone Attenuates the Senescence of Nucleus Pulposus Cells and Ameliorates Intervertebral Disc Degeneration via Inhibition of STING-TBK1/NF-κB and MAPK Signaling. Front Pharmacol 2021; 12:641098. [PMID: 33935734 PMCID: PMC8079987 DOI: 10.3389/fphar.2021.641098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The progression of intervertebral disc degeneration (IDD) is multifactorial with the senescence of nucleus pulposus (NP) cells and closely related to inflammation in NP cells. Dehydrocostus lactone (DHE) is a natural sesquiterpene lactone isolated from medicinal plants that has anti-inflammatory properties. Thus, DHE may have a therapeutic effect on the progression of IDD. In this study, NP cells were used to determine the appropriate concentration of DHE in vitro. The role of DHE in tumor necrosis factor-α (TNF-α)–induced activation of inflammatory signaling pathways and cellular senescence, together with anabolism and catabolism of extracellular matrix (ECM) in NP cells, was examined in vitro. The therapeutic effect of DHE in vivo was determined using a spinal instability model of IDD in mice. The TNF-α–induced ECM degradation and the senescence of NP cells were partially attenuated by DHE. Mechanistically, DHE inhibited the activation of NF-κB and MAPK inflammatory signaling pathways and ameliorated the senescence of NP cells caused by the activation of STING-TBK1/NF-κB signaling induced by TNF-α. Furthermore, a spinal instability model in mice demonstrated that DHE treatment could ameliorate progression of IDD. Together, our findings indicate that DHE can alleviate IDD changes and has a potential therapeutic function for the treatment of IDD.
Collapse
Affiliation(s)
- Zhiqian Chen
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihao Liang
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Chen
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Han
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. NANOSCALE 2021; 13:6142-6161. [PMID: 33734251 DOI: 10.1039/d0nr09024g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell death is the process that regulates homeostasis and biochemical changes in healthy cells. Silver nanoparticles (AgNPs) act as powerful cell death inducers through the disruption of cellular signalling functions. In this study, embryonic zebrafish cells (ZF4) were used as a potential early-stage aquatic model to evaluate the molecular and cell death mechanisms implicated in the toxicity of AgNPs and Ag+. Here, a low, medium, and high concentration (2.5, 5, and 10 μg mL-1) of three different sizes of AgNPs (10, 30 and 100 nm) and ionic Ag+ (1, 1.5 and 2 μg mL-1) were used to investigate whether the size of the nanomaterial, ionic form, and mass concentration were related to the activation of particular cell death mechanisms and/or induction of different signalling pathways. Changes in the physicochemical properties of the AgNPs were also assessed in the presence of complex medium (cell culture) and reference testing medium (ultra-pure water). Results demonstrated that AgNPs underwent dissolution, as well as changes in hydrodynamic size, zeta potential and polydispersity index in both tested media depending on particle size and concentration. Similarly, exposure dose played a key role in regulating the different cell death modalities (apoptosis, necrosis, autophagy), and the signalling pathways (repair mechanisms) in cells that were activated in the attempt to overcome the induced damage. This study contributes to the 3Rs initiative to replace, reduce and refine animal experimentation through the use of alternative models for nanomaterials assessment.
Collapse
Affiliation(s)
- Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, Edgbaston, UK.
| | | | | |
Collapse
|
15
|
Filip GA, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Scrobota I, Potara M, Baldea I. Biosynthesis of silver nanoparticles using Sambucus nigra L. fruit extract for targeting cell death in oral dysplastic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111974. [PMID: 33812602 DOI: 10.1016/j.msec.2021.111974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
The study aims to evaluate the impact of silver nanoparticles, phytosynthesized with polyphenols from Sambucus nigra L. (SN) fruit extract (AgSN), on dysplastic oral keratinocytes (DOK) and human gingival fibroblasts (HGF) in terms of cell viability and apoptosis. The morphology and ultrastructure of treated cells as well as the mechanisms involved in cell death induction were investigated in DOK cultures. The structure of AgSN was studied by using the appropriate analysis tools such as UV-Vis, transmission electron microscopy, Raman spectroscopy, dynamic light scattering (DLS) and zeta potential assessment. DOK and HGF were treated either with silver nanoparticles capped with Sambucus nigra L. extract or with SN extract. Untreated cells were used as controls. Viability was determined by MTS assay. Transmission electronic microscopy (TEM) was used to evaluate the intracellular localization of the nanoparticles at 4 and 24 h. Annexin V-FITC/propidium iodide staining and the expressions of p53, BAX, BCL2, NFkB, phosphorylated NFkB (pNFkB), pan AKT, pan phosphoAKT, LC3B and ɣH2AX were evaluated to quantify the cell death. ELISA measurements of TNF-α and TRAIL was used for the study of the inflammatory response. Oxidative stress damage induced by nanoparticles was assessed by the malondialdehyde (MDA) level. Silver nanoparticles stimulated HGF proliferation and significantly diminished DOK viability at doses higher than 20 μg/ml. TEM analysis demonstrated the internalization of silver nanoparticles and showed ultrastructural changes of cells such as the appearance of vacuoles, autophagosomes, endosomes. AgSN inhibited the pro-survival molecules and regulators of apoptosis, diminished oxidative stress and inflammation and induced cell death through various mechanisms: necrosis, autophagy and DNA lesions. SN extract had antioxidant and anti-inflammatory effect and increased the DNA lesions and autophagy in DOK cells. Silver nanoparticles protected the normal cells and induced cell death in dysplastic cells by different mechanisms thus offering beneficial effects in the treatment of oral dysplasia.
Collapse
Affiliation(s)
- Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luminita David
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania.
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Bidian C, Filip GA, David L, Florea A, Moldovan B, Robu DP, Olteanu D, Radu T, Clichici S, Mitrea DR, Baldea I. The impact of silver nanoparticles phytosynthesized with Viburnum opulus L. extract on the ultrastrastructure and cell death in the testis of offspring rats. Food Chem Toxicol 2021; 150:112053. [PMID: 33577941 DOI: 10.1016/j.fct.2021.112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
AIM To investigate the effects of prenatal exposure to AgNPs obtained by green synthesis with Viburnum opulus L. extract on the testis in male offspring rats. MATERIAL AND METHODS Two different doses of AgNPs (0.8 and 1.5 mg/kg b.w.) and vehicle (PBS) were administered to Wistar female rats on days 3-14 of gestation. At 6 weeks after birth, the ultrastructural changes in correlation with the amount of silver as well as the parameters of oxidative stress, inflammation and cell death mechanisms in the testis of male offspring were evaluated. RESULTS AgNPs administered during pregnancy crossed the placental and testicular barriers and induced oxidative stress, DNA damage and autophagy as mechanism of cell toxicity. The markers of inflammation and apoptosis decreased after AgNPs exposure while the NFkB activation increased. TEM examination revealed important ultrastructural changes of Sertoli cells, numerous vacuoles and cytoplasmic changes suggestive of the cell's evolution towards necrosis. CONCLUSION Phytoreduced silver nanoparticles with polyphenols from Viburnum opulus L. fruit extract, administered during the embryological development of the male gonad, have testicular toxic effects in offspring even at 6 weeks after birth.
Collapse
Affiliation(s)
- Cristina Bidian
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj Napoca, Romania
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Daniela Popa Robu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Baldea I, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Achim M, Suharoschi R, Danescu S, Vulcu A, Filip GA. Effects of silver and gold nanoparticles phytosynthesized with Cornus mas extract on oral dysplastic human cells. Nanomedicine (Lond) 2020; 15:55-75. [PMID: 31868110 DOI: 10.2217/nnm-2019-0290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Oral cancer is highly aggressive due to difficult diagnosis, therapy resistance and increasing frequency; thus finding prevention therapies is very important. Aim: This study evaluates the use of gold and silver nanoparticles (NPs), phyto-synthesized with Cornus mas extract against oral dysplastic lesions. Methods: NPs were characterized by UV-Vis, Fourier-transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and laser Doppler microelectrophoresis. Biological testing employed two human oral cell lines: gingival fibroblasts and dysplastic keratinocytes and evaluated viability, cell death mechanisms and cellular uptake. Results: NPs induced selective toxic effects against dysplastic cells. p53/BAX/BCL2 activation and PI3K/AKT inhibition led to cell death through necrosis and apoptosis. NPs also induced antioxidant and anti-inflammatory effects. Conclusion: NPs of gold and silver showed promising beneficial effects in the therapy of oral dysplasia.
Collapse
Affiliation(s)
- Ioana Baldea
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell & Molecular Biology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Luminita David
- Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology & Biopharmaceutics, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Faculty of Food Science & Technology, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania
| | - Sorina Danescu
- Department of Dermatology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Adriana Vulcu
- National Institute for Research & Development of Isotopic & Molecular Technologies, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Pham XH, Kim J, Jun BH. Silver Nano/Microparticles: Modification and Applications 2.0. Int J Mol Sci 2020; 21:E4395. [PMID: 32575707 PMCID: PMC7349777 DOI: 10.3390/ijms21124395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
Currently, nano/microparticles are widely used in various fields [...].
Collapse
Affiliation(s)
| | | | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (X.-H.P.); (J.K.)
| |
Collapse
|
20
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
The Effects of TiO 2 Nanoparticles on Cisplatin Cytotoxicity in Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21020605. [PMID: 31963452 PMCID: PMC7013663 DOI: 10.3390/ijms21020605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
There have been many studies on improving the efficacy of cisplatin and on identifying safe compounds that can overcome multi-drug resistance (MDR) acquired by cancer cells. Our previous research showed that polyethylene glycol-modified titanium dioxide nanoparticles (TiO2 PEG NPs) affect cell membrane receptors, resulting in their aggregation, altered localization and downregulation. TiO2 PEG NPs may affect P-glycoprotein (P-gp), a membrane efflux channel involved in MDR. In this study, we investigated the effect of TiO2 PEG NPs on cisplatin cytotoxicity. We used HepG2 cells, which highly express P-gp and A431 cells, which show low expression of P-gp. The results showed that 10 µg/mL 100 nm TiO2 PEG NPs increased intracellular cisplatin levels and cytotoxicity in HepG2 cells but not in A431 cells. TiO2 PEG NPs treatment decreased the expression level of P-gp in HepG2 cells. Our findings indicate that TiO2 PEG NPs enhance cisplatin cytotoxicity by down regulating P-gp and that TiO2 PEG NPs are promising candidates for inhibiting P-gp and reversing drug resistance acquired by cancer cells.
Collapse
|
22
|
Jun BH. Silver Nano/Microparticles: Modification and Applications. Int J Mol Sci 2019; 20:ijms20112609. [PMID: 31141905 PMCID: PMC6600572 DOI: 10.3390/ijms20112609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
- Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|