1
|
Ghaleh HEG, Vakilzadeh G, Zahiri A, Farzanehpour M. Investigating the potential of oncolytic viruses for cancer treatment via MSC delivery. Cell Commun Signal 2023; 21:228. [PMID: 37667271 PMCID: PMC10478302 DOI: 10.1186/s12964-023-01232-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable interest as a promising approach for cancer treatment due to their ability to undergo tumor-trophic migration. MSCs possess the unique ability to selectively migrate to tumors, making them an excellent candidate for targeted delivery of oncolytic viruses (OVs) to treat isolated tumors and metastatic malignancies. OVs have attracted attention as a potential treatment for cancer due to their ability to selectively infect and destroy tumor cells while sparing normal cells. In addition, OVs can induce immunogenic cell death and contain curative transgenes in their genome, making them an attractive candidate for cancer treatment in combination with immunotherapies. In combination with MSCs, OVs can modulate the tumor microenvironment and trigger anti-tumor immune responses, making MSC-releasing OVs a promising approach for cancer treatment. This study reviews researches on the use of MSC-released OVs as a novel method for treating cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Gazal Vakilzadeh
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Ali Zahiri
- Students Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Oxidized tea polyphenol (OTP-3) targets EGFR synergistic nimotuzumab at inhibition of non-small cell lung tumor growth. Bioorg Chem 2022; 128:106084. [DOI: 10.1016/j.bioorg.2022.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
|
3
|
Wu JY, Weng YS, Chiou YC, Hsu FT, Chiang IT. Induction of Apoptosis and Inhibition of EGFR/NF-κB Signaling Are Associated With Regorafenib-sensitized Non-small Cell Lung Cancer to Cisplatin. In Vivo 2021; 35:2569-2576. [PMID: 34410944 DOI: 10.21873/invivo.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The combination of regorafenib with cisplatin/pemetrexed has indicated controllable safety and encouraging antitumor activity in non-small cell lung cancer (NSCLC) patients. However, the anti-NSCLC effects and action mechanisms of regorafenib combined with cisplatin is ambiguous. The major goal of the study was to study the inhibitory effects and action mechanisms of regorafenib combined with cisplatin in NSCLC cells. MATERIALS AND METHODS Cell viability, flow cytometry, immunofluorescence staining, western blotting, migration, and invasion assays were employed to verify the anti-NSCLC effects and mechanisms of regorafenib in combination with cisplatin. RESULTS Cisplatin-induced epidermal growth factor receptor (EGFR)/nuclear factor κB (NF-κB) signaling was effectively inhibited by regorafenib treatment. Regorafenib, erlotinib (EGFR inhibitor) and QNZ (NF-κB inhibitor) may all enhance the cytotoxicity effect of cisplatin. The invasion ability was effectively decreased by combination treatment. Caspase-dependent and -independent apoptosis was activated by cisplatin combined with regorafenib. CONCLUSION Apoptosis induction and EGFR/NF-κB inactivation correlate with regorafenib-enhanced anti-NSCLC efficacy of cisplatin. This study provides evidence of the therapeutic efficacy of regorafenib in combination with cisplatin on NSCLC.
Collapse
Affiliation(s)
- Jeng-Yuan Wu
- Department of Thoracic Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, R.O.C.,School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Chou Chiou
- Chest Medicine Department, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.; .,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| |
Collapse
|
4
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
5
|
Moaven O, W Mangieri C, A Stauffer J, Anastasiadis PZ, Borad MJ. Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice. JCO Precis Oncol 2021; 5:PO.20.00395. [PMID: 34250386 DOI: 10.1200/po.20.00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Selective oncotropism and cytolytic activity against tumors have made certain viruses subject to investigation as novel treatment modalities. However, monotherapy with oncolytic viruses (OVs) has shown limited success and modest clinical benefit. The capacity to genetically engineer OVs makes them a desirable platform to design complementary treatment modalities to overcome the existing treatment options' shortcomings. In recent years, our knowledge of interactions of the tumors with the immune system has expanded profoundly. There is a growing body of literature supporting immunomodulatory roles for OVs. The concept of bioengineering these platforms to induce the desired immune response and complement the current immunotherapeutic modalities to make immune-resistant tumors responsive to immunotherapy is under investigation in preclinical and early clinical trials. This review provides an overview of attempts to optimize oncolytic virotherapy as essential components of the multimodality anticancer therapeutic approach and discusses the challenges in translation to clinical practice.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
6
|
El-Wakil MH, Khattab SN, El-Yazbi AF, El-Nikhely N, Soffar A, Khalil HH. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg Chem 2020; 105:104393. [DOI: 10.1016/j.bioorg.2020.104393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
|
7
|
Xiao B, Ying C, Chen Y, Huang F, Wang B, Fang H, Guo W, Liu T, Zhou X, Huang B, Liu X, Wang Y. Doxorubicin hydrochloride enhanced antitumour effect of CEA-regulated oncolytic virotherapy in live cancer cells and a mouse model. J Cell Mol Med 2020; 24:13431-13439. [PMID: 33251723 PMCID: PMC7701578 DOI: 10.1111/jcmm.15966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Oncolytic adenovirus (OA) has attracted increasing attention due to their specific proliferation in tumour cells and resulting in lysis of tumour cells. To further improve the antitumour effect of OA, in this study, we combined CD55-TRAIL-IETD-MnSOD (CD55-TMn), a CEA-controlled OA constructed previously, and chemotherapy to investigate their synergistic effect and possible mechanisms. MTT assay was performed to detect antitumour effects. Hoechst 33 342 and flow cytometric analysis were used to examine cell apoptosis. Western blotting was performed to examine cell pyroptosis and apoptosis mechanism. Animal experiment was used to detect antitumour effect of doxorubicin hydrochloride (Dox) combined with CD55-TMn in vivo. We firstly found that Dox promotes gene expression mediated by CEA-regulated OA and virus progeny replication by activating phosphorylation of Smad3, and Dox can enhance antitumour effect of CEA-regulated CD55-TMn by promoting cell apotopsis and cell pyroptosis. Thus, our results provide an experimental and theoretical basis on tumour therapy by combination treatment of the oncolytic virotherapy and chemotherapy and it is expected to become a novel strategy for liver cancer therapy.
Collapse
Affiliation(s)
- Boduan Xiao
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Chang Ying
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yongyi Chen
- Institute of cancer research and basic medical sciences of Chinese Academy of SciencesCancer hospital of University of Chinese Academy of SciencesZhejiang cancer hospitalHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People’s HospitalHangzhouChina
| | - Binrong Wang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Wan Guo
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Tao Liu
- Department of OtolaryngologyGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yigang Wang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
8
|
Oncolytic Adenoviruses: Strategies for Improved Targeting and Specificity. Cancers (Basel) 2020; 12:cancers12061504. [PMID: 32526919 PMCID: PMC7352392 DOI: 10.3390/cancers12061504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major health problem. Most of the treatments exhibit systemic toxicity, as they are not targeted or specific to cancerous cells and tumors. Adenoviruses are very promising gene delivery vectors and have immense potential to deliver targeted therapy. Here, we review a wide range of strategies that have been tried, tested, and demonstrated to enhance the specificity of oncolytic viruses towards specific cancer cells. A combination of these strategies and other conventional therapies may be more effective than any of those strategies alone.
Collapse
|
9
|
Aziz AUR, Yu X, Jiang Q, Zhao Y, Deng S, Qin K, Wang H, Liu B. Doxorubicin-induced toxicity to 3D-cultured rat ovarian follicles on a microfluidic chip. Toxicol In Vitro 2020; 62:104677. [DOI: 10.1016/j.tiv.2019.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
|
10
|
Sakhawat A, Ma L, Muhammad T, Khan AA, Chen X, Huang Y. A tumor targeting oncolytic adenovirus can improve therapeutic outcomes in chemotherapy resistant metastatic human breast carcinoma. Sci Rep 2019; 9:7504. [PMID: 31097752 PMCID: PMC6522519 DOI: 10.1038/s41598-019-43668-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy in women, which remains untreatable once metastatic. The treatment of advanced breast cancer is restricted due to chemotherapy resistance. We previously investigated anti-cancer potential of a tumor selective oncolytic adenovirus along with cisplatin in three lung cancer cells; A549, H292, and H661, and found it very efficient. To our surprise, this virotherapy showed remarkable cytotoxicity to chemo-resistant cancer cells. Here, we extended our investigation by using two breast cancer cells and their resistant sublines to further validate CRAd’s anti-resistance properties. Results of in vitro and in vivo analyses recapitulated the similar anti-tumor potential of CRAd. Based on the molecular analysis through qPCR and western blotting, we suggest upregulation of coxsackievirus-adenovirus receptor (CAR) as a selective vulnerability of chemotherapy-resistant tumors. CAR knockdown and overexpression experiments established its important involvement in the success of CRAd-induced tumor inhibition. Additionally, through transwell migration assay we demonstrate that CRAd might have anti-metastatic properties. Mechanistic analysis show that CRAd pre-treatment could reverse epithelial to mesenchymal transition in breast cancer cells, which needs further verification. These insights may prove to be a timely opportunity for the application of CRAd in recurrent drug-resistant cancers.
Collapse
Affiliation(s)
- Ali Sakhawat
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Tahir Muhammad
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China.
| |
Collapse
|