1
|
Wang X, Sun M, Xiong Y, Liu X, Li C, Wang Y, Tang X. Restriction site-associated DNA sequencing (RAD-seq) of tea plant (Camellia sinensis) in Sichuan province, China, provides insights into free amino acid and polyphenol contents of tea. PLoS One 2024; 19:e0314144. [PMID: 39636847 PMCID: PMC11620369 DOI: 10.1371/journal.pone.0314144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Worldwide, tea is a popular beverage; within the realm of Chinese tea, Sichuan tea holds particular significance for its role in the origin and composition of Chinese tea cultivars. Sichuan tea is noted for its rich content of free amino acids (FAAs) and tea polyphenols (TPs), which has made it an important subject for studying genetic diversity and the genes regulating these compounds. In this study, 139 varieties of tea were collected from areas in Sichuan Province, China, with similar geographical and climatic conditions. The FAA content was approximately 3% and the TP content was approximately 17%. Using RAD sequencing, 5,656,224 variant loci were identified, primarily comprising SNPs (94.17%) and indels (5.83%). Evolutionary analysis revealed that genetic divergence was not closely linked to the collection location. Population structure analysis confirmed a division into two main populations having a similar composition to the phylogenetic clusters. Screening for FAA-related SNPs identified significant loci associated with 33 genes that potentially regulate FAA content. Similarly, TP-related analysis pinpointed 8 SNPs significantly linked to 20 candidate genes. Notably, genetic associations hinted at the genes involved in the stress response and the accumulation of phenolic compounds, enhancing the understanding of determinants of tea quality. This research underscores the potential for molecular breeding based on genetic insights, suggesting pathways to improve the FAA and TP contents in tea. These findings not only provide a solid foundation for exploring gene-chemical interactions but also offer practical strategies for improving the nutritional and sensory attributes of tea cultivars through informed breeding practices.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Minshan Sun
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Yuanyuan Xiong
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Xiao Liu
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Chunhua Li
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Yun Wang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Xiaobo Tang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| |
Collapse
|
2
|
Wu S, Yan M, Liu J, Li Y, Tian R, Li C, Huang L, Lu Z, Xu P, Mao W. Clerodendranthus spicatus inhibits epithelial-mesenchymal transition of renal tubular cells through the NF-κB/Snail signalling pathway in hyperuricaemia nephropathy. PHARMACEUTICAL BIOLOGY 2023; 61:1274-1285. [PMID: 37599625 PMCID: PMC10443970 DOI: 10.1080/13880209.2023.2243086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Clerodendranthus spicatus Thunb. (Labiatae) (CS), a perennial traditional Chinese medicinal herb that can reduce serum uric acid (sUA) levels and ameliorate renal function is widely used to treat hyperuricaemic nephropathy (HN). OBJECTIVE To investigate the molecular mechanism of action of CS in HN treatment using in vivo and in vitro experiments. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into control, HN, CS and positive control allopurinol groups. The HN group was intraperitoneally injected with 750 mg/kg oxonic acid potassium (OA), whereas the CS group was injected with OA along with a gavage of CS (low dose 3.125 g/kg, high dose 6.25 g/kg) for five weeks. For in vitro studies, uric acid-treated HK2 cells were used to verify the therapeutic mechanism of CS in HN. RESULTS HN rats exhibit pathological phenotypes of elevated sUA levels and renal injury. CS significantly improved these symptoms and sUA (p < 0.05) and blood urea nitrogen (p < 0.01) levels, and dramatically improved renal tubular injury in HN rats. The IC50 value of UA (uric acid) in HK2 cells was 826.32 ± 3.55 μg/mL; however, 120 ng/mL CS had no significant cytotoxicity on HK2 cells. In vivo and in vitro studies showed that CS inhibited NF-κB phosphorylation and inhibited α-smooth muscle actin (α-SMA) and vimentin expression while increasing E-cadherin expression, suggesting that CS inhibited the fibrotic process in renal cells, thus protecting renal function. DISCUSSION AND CONCLUSIONS These findings provide a fundamental understanding of the application of CS in HN treatment to better guide clinical interventions.
Collapse
Affiliation(s)
- Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Meixia Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yizhen Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Lihuang Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhisheng Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
3
|
Patil AB, Kar D, Datta S, Vijay N. Genomic and Transcriptomic Analyses Illuminates Unique Traits of Elusive Night Flowering Jasmine Parijat (Nyctanthes arbor-tristis). PHYSIOLOGIA PLANTARUM 2023; 175:e14119. [PMID: 38148217 DOI: 10.1111/ppl.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The night-flowering Jasmine, Nyctanthes arbor-tristis also known as Parijat, is a perennial woody shrub belonging to the family of Oleaceae. It is popular for its fragrant flowers that bloom in the night and is a potent source of secondary metabolites. However, knowledge about its genome and the expression of genes regulating flowering or secondary metabolite accumulation is lacking. In this study, we generated whole genome sequencing data to assemble the first de novo assembly of Parijat and use it for comparative genomics and demographic history reconstruction. The temporal dynamics of effective population size (Ne ) experienced a positive influence of colder climates suggesting the switch to night flowering may have provided an evolutionary advantage. We employed multi-tissue transcriptome sequencing of floral stages/parts to obtain insights into the transcriptional regulation of nocturnal flower development and the production of volatiles/metabolites. Tissue-specific transcripts for mature flowers revealed key players in circadian regulation and flower development, including the auxin pathway and cell wall modifying genes. Furthermore, we identified tissue-specific transcripts responsible for producing numerous secondary metabolites, mainly terpenoids and carotenoids. The diversity and specificity of Terpene Synthase (TPS) and CCDs (Carotenoid Cleavage Deoxygenases) mediate the bio-synthesis of specialised metabolites in Parijat. Our study establishes Parijat as a novel non-model species to understand the molecular mechanisms of nocturnal blooming and secondary metabolite production.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Debojyoti Kar
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Sourav Datta
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Shaikh TM, Rahman M, Smith T, Anderson JV, Chao WS, Horvath DP. Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in Camelina sativa. THE PLANT GENOME 2023:e20318. [PMID: 36896462 DOI: 10.1002/tpg2.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes. We performed whole genome homozygosity mapping to identify markers and candidate genes responsible for freezing tolerance difference between these two genotypes. A total of 28 F3 RILs were sequenced to ∼30× coverage, and parental lines were sequenced to >30-40× coverage with Pacific Biosciences high fidelity technology and 60× coverage using Illumina whole genome sequencing. Overall, about 126k homozygous single nucleotide polymorphism markers were identified that differentiate both parents. Moreover, 617 markers were also homozygous in F3 families fixed for freezing tolerance/susceptibility. All these markers mapped to two contigs forming a contiguous stretch of chromosome 11. The homozygosity mapping detected 9 homozygous blocks among the selected markers and 22 candidate genes with strong similarity to regions in or near the homozygous blocks. Two such genes were differentially expressed during cold acclimation in camelina. The largest block contained a cold-regulated plant thionin and a putative rotamase cyclophilin 2 gene previously associated with freezing resistance in arabidopsis (Arabidopsis thaliana). The second largest block contains several cysteine-rich RLK genes and a cold-regulated receptor serine/threonine kinase gene. We hypothesize that one or more of these genes may be primarily responsible for freezing tolerance differences in camelina varieties.
Collapse
Affiliation(s)
- T M Shaikh
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Timothy Smith
- USDA/ARS, Genetics and Animal Breeding, Clay Center, NE, USA
| | - James V Anderson
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - David P Horvath
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
5
|
Han X, Li YH, Yao MH, Yao F, Wang ZL, Wang H, Li H. Transcriptomics Reveals the Effect of Short-Term Freezing on the Signal Transduction and Metabolism of Grapevine. Int J Mol Sci 2023; 24:ijms24043884. [PMID: 36835298 PMCID: PMC9965549 DOI: 10.3390/ijms24043884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Low temperature is an important factor limiting plant growth. Most cultivars of Vitis vinifera L. are sensitive to low temperatures and are at risk of freezing injury or even plant death during winter. In this study, we analyzed the transcriptome of branches of dormant cv. Cabernet Sauvignon exposed to several low-temperature conditions to identify differentially expressed genes and determine their function based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)enrichment analyses. Our results indicated that exposure to subzero low temperatures resulted in damage to plant cell membranes and extravasation of intracellular electrolytes, and that this damage increased with decreasing temperature or increasing duration. The number of differential genes increased as the duration of stress increased, but most of the common differentially expressed genes reached their highest expression at 6 h of stress, indicating that 6 h may be a turning point for vines to tolerate extreme low temperatures. Several pathways play key roles in the response of Cabernet Sauvignon to low-temperature injury, namely: (1) the role of calcium/calmodulin-mediated signaling; (2) carbohydrate metabolism, including the hydrolysis of cell wall pectin and cellulose, decomposition of sucrose, synthesis of raffinose, and inhibition of glycolytic processes; (3) the synthesis of unsaturated fatty acids and metabolism of linolenic acid; and (4) the synthesis of secondary metabolites, especially flavonoids. In addition, pathogenesis-related protein may also play a role in plant cold resistance, but the mechanism is not yet clear. This study reveals possible pathways for the freezing response and leads to new insights into the molecular basis of the tolerance to low temperature in grapevine.
Collapse
Affiliation(s)
- Xing Han
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Yi-Han Li
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Mo-Han Yao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fei Yao
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Zhi-Lei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Correspondence: (H.W.); (H.L.); Tel.: +86-029-8708-1099 (H.W.); +86-029-8708-2805 (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Correspondence: (H.W.); (H.L.); Tel.: +86-029-8708-1099 (H.W.); +86-029-8708-2805 (H.L.)
| |
Collapse
|
6
|
De Rosa V, Falchi R, Moret E, Vizzotto G. Insight into Carbohydrate Metabolism and Signaling in Grapevine Buds during Dormancy Progression. PLANTS (BASEL, SWITZERLAND) 2022; 11:1027. [PMID: 35448755 PMCID: PMC9028844 DOI: 10.3390/plants11081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Perennial fruit crops enter dormancy to ensure bud tissue survival during winter. However, a faster phenological advancement caused by global warming exposes bud tissue to a higher risk of spring frost damage. Tissue dehydration and soluble sugars accumulation are connected to freezing tolerance, but non-structural carbohydrates also act as metabolic substrates and signaling molecules. A deepened understanding of sugar metabolism in the context of winter freezing resistance is required to gain insight into adaptive possibilities to cope with climate changes. In this study, the soluble sugar content was measured in a cold-tolerant grapevine hybrid throughout the winter season. Moreover, the expression of drought-responsive hexose transporters VvHT1 and VvHT5, raffinose synthase VvRS and grapevine ABA-, Stress- and Ripening protein VvMSA was analyzed. The general increase in sugars in December and January suggests that they can participate in protecting bud tissues against low temperatures. The modulation of VvHT5, VvINV and VvRS appeared consistent with the availability of the different sugar species; challenging results were obtained for VvHT1 and VvMSA, suggesting interesting hypotheses about their role in the sugar-hormone crosstalk. The multifaceted role of sugars on the intricate phenomenon, which is the response of dormant buds to changing temperature, is discussed.
Collapse
|
7
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|