1
|
de Souza Lima Mendes M, Duroux G, Boudier A, Pranee P, Okazaki Y, Buffeteau T, Massip S, Nlate S, Oda R, Hillard E, Pouget E. Porphyrin J-aggregates as a probe for chiral impurities as demonstrated by their symmetry breaking by confinement in montmorillonite clay. NANOSCALE 2025; 17:1334-1341. [PMID: 39625253 DOI: 10.1039/d4nr03728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In this paper, we demonstrate that chiral J-aggregates of porphyrins are able to detect minute chiral impurities, in this case, the presence of right-handed quartz in acid-activated K10 montmorillonite clay. Aggregation and symmetry breaking of 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin (TCPP) and 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin (TPPS) were observed upon interaction with acid-activated montmorillonite clay (MMT-K10). A panel of characterization techniques, including UV-visible, electronic circular dichroism, IR, and vibrational circular dichroism spectroscopies, as well as X-ray scattering, were employed to investigate the aggregation of the confined TPPS and TCPP. An intriguing and persistent negative exciton effect was detected in the electronic circular dichroism spectra at the early stages of J-aggregation. The enrichment of a right-handed quartz impurity in the clay detected by vibrational circular dichroism may explain the symmetry breaking in the porphyrin assemblies. As a result, we propose that chiral porphyrin aggregates could serve as innovative probes for detecting subtle chirality in inorganic nanomaterials.
Collapse
Affiliation(s)
| | - Gautier Duroux
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Anthony Boudier
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Piyanan Pranee
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yutaka Okazaki
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Stéphane Massip
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033, F-33600 Pessac, France
| | - Sylvain Nlate
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Reiko Oda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Elizabeth Hillard
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Emilie Pouget
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
2
|
Guo D, Zhang Z, Sun J, Hou W, Du N. A primitive cell model involving Vesicles, microtubules and asters. J Colloid Interface Sci 2024; 675:700-711. [PMID: 38996700 DOI: 10.1016/j.jcis.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
HYPOTHESIS Simple single-chain amphiphiles (sodium monododecyl phosphate, SDP) and organic small molecules (isopentenol, IPN), both of primitive relevance, are proved to have been the building blocks of protocells on the early Earth. How do SDP-based membrane and coexisting IPN come together in specific ways to produce more complex chemical entities? What kind of cell-like behavior can be endowed with this protocell model? These are important questions in the pre-life chemical origin scenario that have not been answered to date. EXPERIMENTS The phase behavior and formation mechanism of the aggregates for SDP/IPN/H2O ternary system were characterized and studied by different electron microscopy, fluorescent probe technology, DLS, IR, ESI-MS, SAXS, etc. The stability (freeze-thaw and wet-dry treatments) and cell-like behavior (chemical signaling communication) were tested via simulating particular scenarios. FINDINGS Vesicles, microtubules and asters phases resembling the morphology and structure of modern cells/organelles were obtained. The intermolecular hydrogen bonding is the main driving force for the emergence of the aggregates. The protocell models not only display remarkable stabilities by simulating the primordial Earth's diurnal temperature differences and ocean tides but also are able to exhibit cell-like behavior of chemical signaling transition.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
3
|
Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The development of methodologies to sense glyphosate has gained momentum due to its toxicological and ecotoxicological effects. In this work, a red-emitting and polymerizable guanidinium benzoxadiazole probe was developed for the fluorescence detection of glyphosate. The interaction of the fluorescent probe and the tetrabutylammonium salt of glyphosate was studied via UV/vis absorption and fluorescence spectroscopy in chloroform and acetonitrile. The selective recognition of glyphosate was achieved by preparing molecularly imprinted polymers, able to discriminate against other common herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (dicamba), as thin layers on submicron silica particles. The limits of detection of 4.8 µM and 0.6 µM were obtained for the sensing of glyphosate in chloroform and acetonitrile, respectively. The reported system shows promise for future application in the sensing of glyphosate through further optimization of the dye and the implementation of a biphasic assay with water/organic solvent mixtures for sensing in aqueous environmental samples.
Collapse
|
4
|
di Nunzio MR, Gutiérrez M, Moreno JM, Corma A, Díaz U, Douhal A. Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing. Int J Mol Sci 2021; 23:ijms23010330. [PMID: 35008756 PMCID: PMC8745538 DOI: 10.3390/ijms23010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
In this contribution, we report on the solid-state-photodynamical properties and further applications of a low dimensional composite material composed by the luminescent trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye interacting with a two-dimensional-metal organic framework (2D-MOF), Al-ITQ-HB. Three different samples with increasing concentration of DCM are synthesized and characterized. The broad UV-visible absorption spectra of the DCM/Al-ITQ-HB composites reflect the presence of different species of DCM molecules (monomers and aggregates). In contrast, the emission spectra are narrower and exhibit a bathochromic shift upon increasing the DCM concentration, in agreeance with the formation of adsorbed aggregates. Time-resolved picosecond (ps)-experiments reveal multi-exponential behaviors of the excited composites, further confirming the heterogeneous nature of the samples. Remarkably, DCM/Al-ITQ-HB fluorescence is sensitive to vapors of electron donor aromatic amine compounds like aniline, methylaniline, and benzylamine due to a H-bonding-induced electron transfer (ET) process from the analyte to the surface-adsorbed DCM. These findings bring new insights on the photobehavior of a well-known dye when interacting with a 2D-MOF and its possible application in sensing aniline derivatives.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - José María Moreno
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
- Correspondence:
| |
Collapse
|
5
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|