1
|
Radbakhsh S, Kesharwani P, Sahebkar A. Therapeutic potential of curcumin in autophagy modulation: Insights into the role of transcription factor EB. Mutat Res 2024; 829:111879. [PMID: 39178722 DOI: 10.1016/j.mrfmmm.2024.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Transcription factor EB (TFEB) is a basic Helix-Loop-Helix/Leucine Zipper (bHLHZip) class of DNA-binding proteins, which can control the expression of genes included in the autophagy-lysosomal pathway. TFEB regulates the autophagic flux by enhancing lysosome biogenesis, forming autophagosomes, and fusion with lysosomes, thereby facilitating cellular clearance of pathogenic protein structures. Curcumin is a natural polyphenolic molecule with pharmacological properties that make it a potential therapeutic candidate for a wide range of diseases. One of the important curcumin mechanisms of action includes modulation of autophagy through affecting various signaling components such as TFEB. This review discusses in vitro and in vivo evidence on the effects of curcumin on autophagy process via modulating TFEB activity in different disorders.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li X, Xiang C, Zhu S, Guo J, Liu C, Wang A, Cao J, Lu Y, Neculai D, Xu P, Feng XH. SNX8 enables lysosome reformation and reverses lysosomal storage disorder. Nat Commun 2024; 15:2553. [PMID: 38519472 PMCID: PMC10959956 DOI: 10.1038/s41467-024-46705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.
Collapse
Affiliation(s)
- Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cong Xiang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shilei Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chang Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ailian Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kumar S, Panda SP. Targeting GM2 Ganglioside Accumulation in Dementia: Current Therapeutic Approaches and Future Directions. Curr Mol Med 2024; 24:1329-1345. [PMID: 37877564 DOI: 10.2174/0115665240264547231017110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
Dementia in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside's degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB. The hydrolysis of GM2 also requires a non-enzymatic protein, the GM2 activator protein (GM2-AP), encoded by GM2A. Pathogenic mutations of HEXA, HEXB, and GM2A are responsible for autosomal recessive diseases known as GM2 gangliosidosis, caused by the excessive intralysosomal accumulation of GM2 gangliosides. In AD, PD and DLB, GM2 ganglioside accumulation is reported to facilitate Aβ and α-synuclein aggregation into toxic oligomers and plaques through activation of downstream signaling pathways, such as protein kinase C (PKC) and oxidative stress factors. This review explored the potential role of GM2 ganglioside alteration in toxic protein aggregations and its related signaling pathways leading to neurodegenerative diseases. Further review explored potential therapeutic approaches, which include synthetic and phytomolecules targeting GM2 ganglioside accumulation in the brain, holding a promise for providing new and effective management for dementia.
Collapse
Affiliation(s)
- Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| |
Collapse
|
4
|
Jiao F, Zhou B, Meng L. The regulatory mechanism and therapeutic potential of transcription factor EB in neurodegenerative diseases. CNS Neurosci Ther 2022; 29:37-59. [PMID: 36184826 PMCID: PMC9804079 DOI: 10.1111/cns.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Bojie Zhou
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Lingyan Meng
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| |
Collapse
|
5
|
Sun Z, Wei X, Bai J, Li W, Yang J, Deng Z, Wu M, Ying T, He G. The effects of curcumin on anthropometric and cardiometabolic parameters of patients with metabolic related diseases: a systematic review and dose-effect meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:9282-9298. [PMID: 35475714 DOI: 10.1080/10408398.2022.2067826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:To perform a meta-analysis of published randomized controlled trials (RCTs) to assess the effects of curcumin supplementation with different formulations on anthropometric and cardiometabolic indices in patients with metabolism-related diseases (MRDs). Methods: Six databases, including PubMed, Embase, Web of Science, China national knowledge internet (CNKI), Wanfang and China Biology Medicine (CBM), were systematically searched to find relevant articles from 2011 to July 2021. The effect sizes were expressed as weighted mean difference (WMD) with 95% confidence intervals (CI). Between-study heterogeneity was assessed using I2. Subgroup analysis was conducted to find possible sources of heterogeneity. Curcumin formulations in this study were divided as low bioavailability, high bioavailability and nanocurcumin. Results: Of the retrieved 1585 articles, 31 were included in the final analysis. Combined effect sizes suggested a significant effect of curcumin supplementation on reduced body weight (BW) (WMD: -0.94 kg, 95% CI: -1.40, -0.47) and body mass index (BMI) (WMD: -0.40 kg/m2, 95% CI: -0.60, -0.19), respectively. The results also showed significant improvements of fasting plasma glucose (FPG) (WMD: -0.50 mg/dL, 95% CI: -0.72, -0.28), glycosylated hemoglobin (Hb1Ac) (WMD: -0.42%, 95% CI: -0.57, -0.26), insulin (INS) (WMD: -1.70 μIU/mL, 95%CI: -2.03, -1.38), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD: -0.71, 95%CI: -1.11, -0.31), high-density lipoprotein cholesterol (HDL-C) (WMD: 1.73 mg/dL, 95%CI: 0.78, 2.68) and high sensitivity C-reactive protein (Hs-CRP) (WMD: -1.11, 95%CI: -2.16, -0.05). Nanocurcumin showed a greater reduction in FPG (WMD: -1.78 mg/dL, 95% CI: -2.49, -1.07), INS (WMD: -1.66 μIU/mL, 95% CI: -3.21, -0.11), TC (WMD: -12.64 mg/dL (95% CI: -23.72, -1.57) and LDL-C (WMD: -8.95 mg/dL, 95% CI: -16.51, -1.38). The dose-effect analysis showed that there were trends of first rising and then falling between the supplemented curcumin dose and BW, BMI, LDL-C, Hb1Ac, which were clearly distinguished at 80 mg/d due to the strong effect of nanocurcumin on outcomes. A slow upward trend between the dose of curcumin supplementation and HDL-C. No relationships between dose and outcomes were found for FPG and insulin, except for nanocurcumin at 80 mg/d. Conclusions: Our study showed some significant beneficial effects of curcumin supplementation on improving BW, BMI, and the levels of FPG, Hb1Ac, HOMA-IR, HDL-C and Hs-CRP in patients with MRDs. Nanocurcumin may have a greater effect on the reduction of FPG, INS, TC and LDL-C than other curcumin formulations. Considering the potential bias and limitations of studies included, further quality studies with larger sample sizes are needed to confirm these results.
Collapse
Affiliation(s)
- Zhuo Sun
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Wei
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jianan Bai
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Zequn Deng
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Min Wu
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Tao Ying
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- China-DRIs Expert Committee on Other Food Substances, Chinese Nutrition Society, Beijing, China
| |
Collapse
|
6
|
Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM 2 Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life (Basel) 2021; 11:life11101007. [PMID: 34685379 PMCID: PMC8539434 DOI: 10.3390/life11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a β hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient’s serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient’s cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient’s serum and in an improvement in the patient’s neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient’s plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient’s condition.
Collapse
|
7
|
Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med 2020; 15:123. [PMID: 33292395 PMCID: PMC7684757 DOI: 10.1186/s13020-020-00402-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved degradation process for long-lived intracellular proteins and organelles mediated by lysosomes. Deficits in the autophagy-lysosome pathway (ALP) have been linked to a variety of human diseases, including neurodegenerative diseases, lysosomal storage disorders, and cancers. Transcription factor EB (TFEB) has been identified as a major regulator of autophagy and lysosomal biogenesis. Increasing evidence has demonstrated that TFEB activation can promote the clearance of toxic protein aggregates and regulate cellular metabolism. Traditional Chinese medicine (TCM)-derived natural products as important sources for drug discovery have been widely used for the treatment of various diseases associated with ALP dysfunction. Herein, we review (1) the regulation of TFEB and ALP; (2) TFEB and ALP dysregulation in human diseases; (3) TFEB activators from natural products and their potential uses.
Collapse
|
8
|
Park J, Ahn S, Lee Y, Koh D, Lim Y. 1 H and 13 C NMR spectral assignments of twenty-six 1-aryl-5-(2-(styryl)phenyl)penta-1,4-dien-3-ones. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:334-346. [PMID: 31953938 DOI: 10.1002/mrc.4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Jihyun Park
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| |
Collapse
|
9
|
Bioactivity Evaluation of a Novel Formulated Curcumin. Nutrients 2019; 11:nu11122982. [PMID: 31817577 PMCID: PMC6950821 DOI: 10.3390/nu11122982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Curcumin has been used as a traditional medicine and/or functional food in several cultures because of its health benefits including anticancer properties. However, poor oral bioavailability of curcumin has limited its oral usage as a food supplement and medical food. Here we formulated curcumin pellets using a solid dispersion technique. The pellets had the advantages of reduced particle size, improved water solubility, and particle porosity. This pellet form led to an improvement in curcumin's oral bioavailability. Additionally, we used the C-Map and Library of Integrated Network-Based Cellular Signatures (LINCS) Unified Environment (CLUE) gene expression database to determine the potential biological functions of formulated curcumin. The results indicated that, similar to conventional curcumin, the formulated curcumin acted as an NF-κB pathway inhibitor. Moreover, ConsensusPathDB database analysis was used to predict possible targets and it revealed that both forms of curcumin exhibit similar biological functions, including apoptosis. Biochemical characterization revealed that both the forms indeed induced apoptosis of hepatocellular carcinoma (HCC) cell lines. We concluded that the formulated curcumin increases the oral bioavailability in animals, and, as expected, retains characteristics similar to conventional curcumin at the cellular level. Our screening platform using big data not only confirms that both the forms of curcumin have similar mechanisms but also predicts the novel mechanism of the formulated curcumin.
Collapse
|