1
|
Alameda JP, García-García VA, López S, Hernando A, Page A, Navarro M, Moreno-Maldonado R, Paramio JM, Ramírez Á, García-Fernández RA, Casanova ML. CYLD Inhibits the Development of Skin Squamous Cell Tumors in Immunocompetent Mice. Int J Mol Sci 2021; 22:6736. [PMID: 34201751 PMCID: PMC8268443 DOI: 10.3390/ijms22136736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cylindromatosis (CYLD) is a deubiquitinase (DUB) enzyme that was initially characterized as a tumor suppressor of adnexal skin tumors in patients with CYLD syndrome. Later, it was also shown that the expression of functionally inactive mutated forms of CYLD promoted tumor development and progression of non-melanoma skin cancer (NMSC). However, the ability of wild-type CYLD to inhibit skin tumorigenesis in vivo in immunocompetent mice has not been proved. Herein, we generated transgenic mice that express the wild type form of CYLD under the control of the keratin 5 (K5) promoter (K5-CYLDwt mice) and analyzed the skin properties of these transgenic mice by WB and immunohistochemistry, studied the survival and proliferating characteristics of primary keratinocytes, and performed chemical skin carcinogenesis experiments. As a result, we found a reduced activation of the nuclear factor kappa B (NF-κB) pathway in the skin of K5-CYLDwt mice in response to tumor necrosis factor-α (TNF-α); accordingly, when subjected to insults, K5-CYLDwt keratinocytes are prone to apoptosis and are protected from excessive hyperproliferation. Skin carcinogenesis assays showed inhibition of tumor development in K5-CYLDwt mice. As a mechanism of this tumor suppressor activity, we found that a moderate increase in CYLD expression levels reduced NF-κB activation, which favored the differentiation of tumor epidermal cells and inhibited its proliferation; moreover, it decreased tumor angiogenesis and inflammation. Altogether, our results suggest that increased levels of CYLD may be useful for anti-skin cancer therapy.
Collapse
Affiliation(s)
- Josefa P. Alameda
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Verónica A. García-García
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Silvia López
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040 Madrid, Spain; (S.L.); (R.A.G.-F.)
| | - Ana Hernando
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Bionomous Sàrl, PFL Innovation Park, Bâtiment, FCH-1015 Lausanne, Switzerland
| | - Angustias Page
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Manuel Navarro
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Rodolfo Moreno-Maldonado
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Bio-innova Consulting, 28049 Madrid, Spain
| | - Jesús M. Paramio
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Ramírez
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Rosa A. García-Fernández
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040 Madrid, Spain; (S.L.); (R.A.G.-F.)
| | - María Llanos Casanova
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (J.P.A.); (V.A.G.-G.); (A.H.); (A.P.); (M.N.); (R.M.-M.); (J.M.P.); (Á.R.)
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Anton DB, Ducati RG, Timmers LFSM, Laufer S, Goettert MI. A Special View of What Was Almost Forgotten: p38δ MAPK. Cancers (Basel) 2021; 13:2077. [PMID: 33923030 PMCID: PMC8123357 DOI: 10.3390/cancers13092077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The p38δ mitogen-activated protein kinase is an important signal transduction enzyme. p38δ has recently emerged as a drug target due to its tissue-specific expression patterns and its critical roles in regulation of cellular processes related to cancer and inflammatory diseases, such as cell proliferation, cell migration, apoptosis, and inflammatory responses. However, potent and specific p38δ inhibitors have not been defined so far. Moreover, in cancer disease, p38δ appears to act as a tumor suppressor or tumor promoter according to cancer and cell type studied. In this review, we outline the current understanding of p38δ roles in each cancer type, to define whether it is possible to delineate new cancer therapies based on small-molecule p38δ inhibitors. We also highlight recent advances made in the design of molecules with potential to inhibit p38 isoforms and discuss structural approaches to guide the search for p38δ inhibitors.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Rodrigo Gay Ducati
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Luís Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Márcia Inês Goettert
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| |
Collapse
|
3
|
Jin D, An X, Zhang Y, Zhao S, Duan L, Duan Y, Lian F, Tong X. Potential Mechanism Prediction of Herbal Medicine for Pulmonary Fibrosis Associated with SARS-CoV-2 Infection Based on Network Analysis and Molecular Docking. Front Pharmacol 2021; 12:602218. [PMID: 33986661 PMCID: PMC8112227 DOI: 10.3389/fphar.2021.602218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear. Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection. Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-β1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-β1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-β1 signaling pathways. Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.
Collapse
Affiliation(s)
- De Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shenghui Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liyun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Herrera-Melle L, Crespo M, Leiva M, Sabio G. Stress-activated kinases signaling pathways in cancer development. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
6
|
George SA, Kiss A, Obaid SN, Venegas A, Talapatra T, Wei C, Efimova T, Efimov IR. p38δ genetic ablation protects female mice from anthracycline cardiotoxicity. Am J Physiol Heart Circ Physiol 2020; 319:H775-H786. [PMID: 32822209 PMCID: PMC11018268 DOI: 10.1152/ajpheart.00415.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in p38δ-/- female mice post-DOX relative to WT females, but not in p38γ-/- or p38γ-/-δ-/- male or female mice. The improved survival in DOX-treated p38δ-/- females was associated with decreased fibrosis, increased cardiac output and LV diameter relative to DOX-treated WT females, and similar to saline-treated controls. Structural and echocardiographic parameters were either unchanged or worsened in all other groups. Increased autophagy, as suggested by increased LC3-II level, and decreased mammalian target of rapamycin activation was also observed in DOX-treated p38δ-/- females. p38δ plays a crucial role in promoting DOX-induced cardiotoxicity in female mice by inhibiting autophagy. Therefore, p38δ targeting could be a potential cardioprotective strategy in anthracycline chemotherapy.NEW & NOTEWORTHY This study for the first time identifies the sex-specific roles of the alternative p38γ and p38δ MAPK isoforms in promoting doxorubicin (DOX) cardiotoxicity. We show that p38δ and p38γ/δ systemic deletion was cardioprotective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
| | - Sofian N Obaid
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Aileen Venegas
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Trisha Talapatra
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Chapman Wei
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
| |
Collapse
|
7
|
Palazzo E, Morasso MI, Pincelli C. Molecular Approach to Cutaneous Squamous Cell Carcinoma: From Pathways to Therapy. Int J Mol Sci 2020; 21:ijms21041211. [PMID: 32059344 PMCID: PMC7072792 DOI: 10.3390/ijms21041211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Correspondence:
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|