1
|
Kilic G, Matzaraki V, Bulut O, Baydemir I, Ferreira AV, Rabold K, Moorlag SJCFM, Koeken VACM, de Bree LCJ, Mourits VP, Joosten LAB, Domínguez-Andrés J, Netea MG. RORα negatively regulates BCG-induced trained immunity. Cell Immunol 2024; 403-404:104862. [PMID: 39159505 DOI: 10.1016/j.cellimm.2024.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Trained immunity is a long-lasting change in the responsiveness of innate immune cells, leading to a stronger response upon an unrelated secondary challenge. Epigenetic, transcriptional, and metabolic reprogramming contribute to the development of trained immunity. By investigating the impact of gene variants on trained immunity responses after Bacillus Calmette-Guérin (BCG) vaccination, we identified a strong association between polymorphisms in the RORA gene and BCG-induced trained immunity in PBMCs isolated from healthy human donors. RORα, encoded by the RORA gene in humans, is a nuclear receptor and a transcription factor, regulating genes involved in circadian rhythm, inflammation, cholesterol, and lipid metabolism. We found that natural RORα agonists in the circulation negatively correlate with the strength of trained immunity responses after BCG vaccination. Moreover, pharmacological inhibition of RORα in human PBMCs led to higher cytokine production capacity and boosted trained immunity induction by BCG. Blocking RORα activity also resulted in morphological changes and increased ROS and lactate production of BCG-trained cells. Blocking lactate dehydrogenase A (LDHA) and glycolysis with sodium oxamate reduced the cytokine production capacity of cells trained with a combination of BCG and the RORα agonist. In conclusion, this study highlights the potential role of RORα in trained immunity, and its impact on human vaccination and diseases should be further investigated.
Collapse
Affiliation(s)
- Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilayda Baydemir
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anaisa V Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Sánchez-Martin S, Altuna-Coy A, Arreaza-Gil V, Bernal-Escoté X, Fontgivell JFG, Ascaso-Til H, Segarra-Tomás J, Ruiz-Plazas X, Chacón MR. Tumoral periprostatic adipose tissue exovesicles-derived miR-20a-5p regulates prostate cancer cell proliferation and inflammation through the RORA gene. J Transl Med 2024; 22:661. [PMID: 39010137 PMCID: PMC11251289 DOI: 10.1186/s12967-024-05458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND From the first steps of prostate cancer (PCa) initiation, tumours are in contact with the most-proximal adipose tissue called periprostatic adipose tissue (PPAT). Extracellular vesicles are important carriers of non-coding RNA such as miRNAs that are crucial for cellular communication. The secretion of extracellular vesicles by PPAT may play a key role in the interactions between adipocytes and tumour. Analysing the PPAT exovesicles (EVs) derived-miRNA content can be of great relevance for understanding tumour progression and aggressiveness. METHODS A total of 24 samples of human PPAT and 17 samples of perivesical adipose tissue (PVAT) were used. EVs were characterized by western blot and transmission electron microscopy (TEM), and uptake by PCa cells was verified by confocal microscopy. PPAT and PVAT explants were cultured overnight, EVs were isolated, and miRNA content expression profile was analysed. Pathway and functional enrichment analyses were performed seeking potential miRNA targets. In vitro functional studies were evaluated using PCa cells lines, miRNA inhibitors and target gene silencers. RESULTS Western blot and TEM revealed the characteristics of EVs derived from PPAT (PPAT-EVs) samples. The EVs were up taken and found in the cytoplasm of PCa cells. Nine miRNAs were differentially expressed between PPAT and PVAT samples. The RORA gene (RAR Related Orphan Receptor A) was identified as a common target of 9 miRNA-regulated pathways. In vitro functional analysis revealed that the RORA gene was regulated by PPAT-EVs-derived miRNAs and was found to be implicated in cell proliferation and inflammation. CONCLUSION Tumour periprostatic adipose tissue is linked to PCa tumour aggressiveness and could be envisaged for new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Sánchez-Martin
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Verónica Arreaza-Gil
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xana Bernal-Escoté
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Pathology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Joan Francesc Garcia Fontgivell
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Pathology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | | | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R Chacón
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain.
- Institut d'Investigació Sanitària Pere Virgili. Hospital Universitari de Tarragona Joan XXIII, C/ Dr. Mallafré Guasch, 4, Tarragona, 43007, Spain.
| |
Collapse
|
3
|
Kaakour D, Fortin B, Masri S, Rezazadeh A. Circadian Clock Dysregulation and Prostate Cancer: A Molecular and Clinical Overview. Clin Med Insights Oncol 2023; 17:11795549231211521. [PMID: 38033743 PMCID: PMC10683379 DOI: 10.1177/11795549231211521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian clock dysregulation has been implicated in various types of cancer and represents an area of growing research. However, the role of the circadian clock in prostate cancer has been relatively unexplored. This literature review will highlight the potential role of circadian clock dysregulation in prostate cancer by examining molecular, epidemiologic, and clinical data. The influence of melatonin, light, night shift work, chronotherapy, and androgen independence are discussed as they relate to the existing literature on their role in prostate cancer.
Collapse
Affiliation(s)
- Dalia Kaakour
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Bridget Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Arash Rezazadeh
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| |
Collapse
|
4
|
Wang C, Song D, Huang Q, Liu Q. Advances in SEMA3F regulation of clinically high-incidence cancers. Cancer Biomark 2023; 38:131-142. [PMID: 37599522 DOI: 10.3233/cbm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.
Collapse
Affiliation(s)
- Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Im H, Baek H, Yang E, Kim K, Oh SK, Lee J, Kim H, Lee JM. ROS inhibits RORα degradation by decreasing its arginine methylation in liver cancer. Cancer Sci 2022; 114:187-200. [PMID: 36114756 PMCID: PMC9807526 DOI: 10.1111/cas.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Retinoic acid receptor-related orphan receptor α (RORα) is a transcription factor involved in nuclear gene expression and a known tumor suppressor. RORα was the first identified substrate of lysine methylation-dependent degradation. However, the mechanisms of other post-translational modifications (PTMs) that occur in RORα remain largely unknown, especially in liver cancer. Arginine methylation is a common PTM in arginine residues of nonhistone and histone proteins and affects substrate protein function and fate. We found an analogous amino acid disposition containing R37 at the ROR N-terminus compared to histone H3 residue, which is arginine methylated. Here, we provide evidence that R37 methylation-dependent degradation is carried out by protein arginine methyltransferase 5 (PRMT5). Further, we discovered that PRMT5 regulated the interaction between the E3 ubiquitin ligase ITCH and RORα through RORα arginine methylation. Arginine methylation-dependent ubiquitination-mediated RORα degradation reduced downstream target gene activation. H2 O2 -induced reactive oxygen species (ROS) decreased PRMT5 protein levels, consequently increasing RORα protein levels in HepG2 liver cancer cells. In addition, ROS inhibited liver cancer progression by inducing apoptosis via PRMT5-mediated RORα methylation and the ITCH axis. Our results potentiate PRMT5 as an elimination target in cancer therapy, and this additional regulatory level within ROS signaling may help identify new targets for therapeutic intervention in liver cancer.
Collapse
Affiliation(s)
- Hyuntae Im
- Department of Molecular Bioscience, College of Biomedical SciencesKangwon National UniversityChuncheonKorea
| | - Hee‐ji Baek
- Department of Biochemistry and Molecular BiologyKorea University College of MedicineSeoulKorea,BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulKorea
| | - Eunbi Yang
- Department of Biochemistry and Molecular BiologyKorea University College of MedicineSeoulKorea,BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulKorea
| | - Kyeongkyu Kim
- Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Se Kyu Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological SciencesSeoul National UniversitySeoulKorea
| | - Jung‐Shin Lee
- Department of Molecular Bioscience, College of Biomedical SciencesKangwon National UniversityChuncheonKorea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular BiologyKorea University College of MedicineSeoulKorea,BK21 Graduate Program, Department of Biomedical SciencesKorea University College of MedicineSeoulKorea
| | - Ji Min Lee
- Graduate School of Medical Science & EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
| |
Collapse
|
6
|
Su J, He H, Li YK, Xia H, Liu F, Zeng Y, Zeng X, Ling H, Su B, Su Q. Diallyl disulfide inhibits proliferation, epithelial-mesenchymal transition, and invasion through RORα-mediated downregulation of Wnt1/β-catenin pathway in gastric cancer cells. J Food Drug Anal 2022; 30:479-492. [PMID: 39666293 PMCID: PMC9635911 DOI: 10.38212/2224-6614.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2024] Open
Abstract
Overactivation of Wnt/β-catenin pathway due to dysfunction of retinoid-related orphan receptor α (RORα) is related to cancer development and progression. Diallyl disulfide (DADS), an active component of garlic, has been reported in our previous study for upregulation of RORα expression in gastric cancer (GC) cells. It remains to be elucidated the role and mechanism of RORα in DADS against GC. This study revealed that DADS treatment resulted in reduced expression levels of Wnt1, β-catenin, TCF-4, intranuclear β-catenin and p-β-catenin in GC cells, concomitant with the compromised expression of β-catenin target genes (Axin, c-Jun, and c-Myc). RORα overexpression augmented DADS-induced downregulation of Wnt1/β-catenin pathway, G2/M phase arrest, and cell growth inhibition in vitro and in vivo. Contrarily, knockdown of RORα attenuated these effects of DADS. Interestingly, DADS induced an increase in the binding of RORα to β-catenin, which may lead to reduction of β-catenin phosphorylation and nuclear translocation. This interplay modulated by DADS may affect β-catenin target gene expression for that the opposite results were observed in DADS-treated RORα knockdown and overexpression cells. DADS caused a decrease in vimentin, snail and MMP-9, as well as an increase in E-cadherin and TIMP3 expression, which restricted epithelial-mesenchymal transition (EMT), migration, and invasion. The aforementioned effects of DADS were weakened simultaneously when the suppression of DADS on the Wnt1/β-catenin pathway was resisted by knockdown of RORα. In contrast, overexpression of RORα enhanced the effects of DADS. Therefore, RORα-mediated downregulation of Wnt1/β-catenin pathway could undertake an important role in anticancer activity of DADS against GC cell proliferation, EMT, migration, and invasion.
Collapse
Affiliation(s)
- Jian Su
- Department of Pathology, Second Affiliated Hospital, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Hui He
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Hong Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Fang Liu
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Ying Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Hui Ling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Bo Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, Hunan 421001,
China
| |
Collapse
|
7
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
8
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
9
|
Zheng J, Zhang L, Tan Z, Zhao Q, Wei X, Yang Y, Li R. Bmal1- and Per2-mediated regulation of the osteogenic differentiation and proliferation of mouse bone marrow mesenchymal stem cells by modulating the Wnt/β-catenin pathway. Mol Biol Rep 2022; 49:4485-4501. [PMID: 35386071 DOI: 10.1007/s11033-022-07292-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bmal1 and Per2 are the core components of the circadian clock genes (CCGs). Bmal1-/- mice exhibit premature aging, as indicated by hypotrichosis and osteoporosis, with a loss of proliferation ability. The same occurs in Per2-/- mice, albeit to a less severe degree. However, whether the effects of Bmal1 and Per2 on proliferation and osteogenic differentiation are synergistic or antagonistic remains unclear. Thus, our study aimed to explore the effects and specific mechanism. METHODS AND RESULTS Lentiviral and adenoviral vectors were constructed to silence or overexpress Bmal1 or Per2 and MTT, flow cytometry, RT-qPCR, WB, immunohistochemistry, alizarin red staining and ChIP-Seq analyses were applied to identify the possible mechanism. The successful knockdown and overexpression of Bmal1/Per2 were detected by fluorescence microcopy. Flow cytometry found out that Bmal1 or Per2 knockdown resulted in G1-phase cell cycle arrest. RT-qPCR showed the different expression levels of Wnt-3a, c-myc1 and axin2 in the Wnt/β-catenin signaling pathway as well as the gene expression change of Rorα and Rev-erbα. Meanwhile, related proteins such as β-catenin, TCF-1, and P-GSK-3β were detected. ALP activity and the amount of mineral nodules were compared. ChIP-Seq results showed the possible mechanism. CONCLUSIONS Bmal1 and Per2, as primary canonical clock genes, showed synergistic effects on the proliferation and differentiation of BMSCs. They would inhibit the Wnt/β-catenin signaling pathway by downregulating Rorα expression or upregulating Rev-erbα expression, both of which were also key elements of CCGs. And this may be the mechanism by which they negatively regulate the osteogenic differentiation of BMSCs. Bmal1 and Per2 show synergistic effects in the proliferation of BMSCs. In addition, they play a synergistic role in negatively regulating the osteogenic differentiation ability of BMSCs. Bmal1 and Per2 may regulate the aging of BMSCs by altering cell proliferation and osteogenic differentiation through Rorα and Rev-erbα to affect Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jiawen Zheng
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Lanxin Zhang
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Zhen Tan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.
- Oral Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qing Zhao
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.
| | - Xiaoyu Wei
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Yuqing Yang
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Rong Li
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
11
|
Li Y, He J, Yu L, Yang Q, Du J, Chen Y, Tang W. Hsa‐miR‐1290 is associated with stemness and invasiveness in prostate cancer cell lines by targeting RORA. Andrologia 2022; 54:e14396. [PMID: 35220610 DOI: 10.1111/and.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuehua Li
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jiang He
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Lu Yu
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Qixin Yang
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jing Du
- Department of Anesthesiology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Yirong Chen
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Tang
- Department of Urology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
12
|
Matsuoka H, Michihara A. Identification of the RORα Transcriptional Network Contributes to the Search for Therapeutic Targets in Atherosclerosis. Biol Pharm Bull 2021; 44:1607-1616. [PMID: 34719639 DOI: 10.1248/bpb.b21-00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinoic acid receptor-related orphan receptor α (RORα) is involved in the regulation of several physiological processes, including development, metabolism, and circadian rhythm. RORα-deficient mice display profound atherosclerosis, in which hypoalphalipoproteinemia is reportedly associated with decreased plasma levels of high-density lipoprotein, increased levels of inflammatory cytokines, and ischemia/reperfusion-induced damage. The recent characterization of endogenous ligands (including cholesterol, oxysterols, provitamin D3, and their derivatives), mediators, and initiation complexes associated with the transcriptional regulation of these orphan nuclear receptors has facilitated the development of synthetic ligands. These findings have also highlighted the potential of application of RORα as a therapeutic target for several diseases, including diabetes, dyslipidemia, and atherosclerosis. In this review, the current literature related to the structure and function of RORα, its genetic inter-individual differences, and its potential as a therapeutic target in atherosclerosis is discussed.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
13
|
Lee JM, Kim H, Baek SH. Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Exp Mol Med 2021; 53:1278-1286. [PMID: 34588606 PMCID: PMC8492739 DOI: 10.1038/s12276-021-00679-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
15
|
Song X, Hu H, Zhao M, Ma T, Gao L. Prospects of circadian clock in joint cartilage development. FASEB J 2020; 34:14120-14135. [PMID: 32946614 DOI: 10.1096/fj.202001597r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Altering the food intake, exercise, and sleep patterns have a great influence on the homeostasis of the biological clock. This leads to accelerated aging of the articular cartilage, susceptibility to arthropathy and other aspects. Deficiency or overexpression of certain circadian clock-related genes accelerates the cartilage deterioration and leads to phenotypic variation in different joints. The process of joint cartilage development includes the formation of joint site, interzone, joint cavitation, epiphyseal ossification center, and cartilage maturation. The mechanism by which, biological clock regulates the cell-cycle, growth, metabolism, and other biological processes of chondrocytes is poorly understood. Here, we summarized the interaction between biological clock proteins and developmental pathways in chondrogenesis and provided the evidence from other tissues that further predicts the molecular patterns of these protein-protein networks in activation, proliferation, and differentiation. The purpose of this review is to gain deeper understanding of the evolution of cartilage and its irreversibility seen in damage and aging.
Collapse
Affiliation(s)
- Xiaopeng Song
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailong Hu
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
17
|
Khan S, Liu Y, Siddique R, Nabi G, Xue M, Hou H. Impact of chronically alternating light-dark cycles on circadian clock mediated expression of cancer (glioma)-related genes in the brain. Int J Biol Sci 2019; 15:1816-1834. [PMID: 31523185 PMCID: PMC6743288 DOI: 10.7150/ijbs.35520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
Disruption of the circadian rhythm is a risk factor for cancer, while glioma is a leading contributor to mortality worldwide. Substantial efforts are being undertaken to decrypt underlying molecular pathways. Our understanding of the mechanisms through which disrupted circadian rhythm induces glioma development and progression is incomplete. We, therefore, examined changes in the expression of glioma-related genes in the mouse brain after chronic jetlag (CJL) exposure. A total of 22 candidate tumor suppressor (n= 14) and oncogenes (n= 8) were identified and analyzed for their interaction with clock genes. Both the control and CJL groups were investigated for the expression of candidate genes in the nucleus accumbens, hippocampus, prefrontal cortex, hypothalamus, and striatum of wild type, Bmal1-/- and Cry1/2 double knockout male mice. We found significant variations in the expression of candidate tumor suppressor and oncogenes in the brain tissues after CJL treatment in the wild type, Bmal1-/- and Cry1/2 double knockout mice. In response to CJL treatment, some of the genes were regulated in the wild type, Bmal1-/- and Cry1/2 similarly. However, the expression of some of the genes indicated their association with the functional clock. Overall, our result suggests a link between CJL and gliomas risk at least partially dependent on the circadian clock. However, further studies are needed to investigate the molecular mechanism associated with CJL and gliomas.
Collapse
Affiliation(s)
- Suliman Khan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, Hubei 430074, China
- University of Chinese Academy of Sciences, Beijing, China
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Rabeea Siddique
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ghulam Nabi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|