1
|
Kumari M, Piyongsola, Ravi Naik M, Singh Rathore H, Kumar Shukla A, Iqbal Dar A, Ravi Kiran AVVV, Kumari K, Acharya A, Thaggikuppe Krishnamurthy P. Targeted delivery of DAPT using dual antibody functionalized solid lipid nanoparticles for enhanced anti-tumour activity against triple negative breast cancer. Int J Pharm 2025; 670:125142. [PMID: 39746584 DOI: 10.1016/j.ijpharm.2024.125142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Triple-negative breast cancer (TNBC) is a subtype known for its aggressive nature, high rates of recurrence, and treatment resistance, largely attributed to the presence of breast cancer stem cells (BCSCs). Traditional therapies often struggle to eliminate BCSCs, which contributes to tumor recurrence. One promising strategy for addressing this challenge is targeting the Notch signaling pathway, which plays a critical role in the self-renewal and maintenance of BCSCs. DAPT, a potent γ-secretase inhibitor that down-regulates Notch, has limited use due to poor bio-distribution and off-target effects. To achieve the targeted delivery of DAPT to TNBC cells, we encapsulated DAPT in solid lipid nanoparticles (SLNs), and the surface of SLNs was further decorated with DLL4 and DR5 antibodies to produce DLL4-DR5-DAPT@SLNs (∼256 ± 3 nm). The developed DLL4-DR5-DAPT@SLNs have been characterized using various spectroscopy and microscopy techniques. The in vitro studies demonstrated that, DLL4-DR5-DAPT@SLNs can effectively internalize, showing excellent cytotoxicity and efficiently suppress cell migration and invasion by reducing the expression of Notch-1, promote apoptosis by increasing the expression of Caspase-8 and eventually inhibit the process of EMT via up-regulating the E-cadherin and down-regulating the vimentin expression at protein level. Further, in vivo studies demonstrated that DLL4-DR5-DAPT@SLNs exhibit targeted accumulation within tumors, resulting in a notable reduction in tumor size from 2.3 cm to 0.9 cm and a decrease in tumor volume from 2506.2 ± 104.6 mm3 to 832.4 ± 93.1 mm3. The targeted treatment significantly reduced the overall tumor burden, contributing to the extension of long-term survival rates. The findings reveal that functionalization of DLL4 and DR5 significantly enhances the therapeutic delivery of DAPT to TNBC cells via simultaneously inhibiting the Notch signaling pathway and promoting apoptosis. The developed nanosystem addresses limitations associated with conventional therapies, such as insufficient targeting, systemic toxicity, and poor bioavailability. This study presents the innovative nanosystem as a potential treatment strategy for TNBC, aiming to enhance treatment efficacy and reduce off-target effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyongsola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Mudavath Ravi Naik
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | | | - Ashish Kumar Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
Miki Y. Hormone-Dependent Cancers: New Aspects on Biochemistry and Molecular Pathology. Int J Mol Sci 2023; 24:10830. [PMID: 37446008 DOI: 10.3390/ijms241310830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Hormones, especially steroids, are closely involved in the physiological functions and proliferation of various target tissues and have long been known to play a key role in the tumorigenesis or carcinogenesis of these target tissues [...].
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
3
|
Garan LAW, Xiao Y, Lin WC. 14-3-3τ drives estrogen receptor loss via ERα36 induction and GATA3 inhibition in breast cancer. Proc Natl Acad Sci U S A 2022; 119:e2209211119. [PMID: 36252018 PMCID: PMC9618134 DOI: 10.1073/pnas.2209211119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
About one-fourth of recurrent estrogen receptor-positive (ER+) breast cancers lose ER expression, leading to endocrine therapy failure. However, the mechanisms underlying ER loss remain to be fully explored. We now show that 14-3-3τ, up-regulated in ∼60% of breast cancer, drives the conversion of ER+ to ER- and epithelial-to-mesenchymal transition (EMT). We identify ERα36, an isoform of ERα66, as a downstream effector of 14-3-3τ. Overexpression of 14-3-3τ induces ERα36 in xenografts and tumor spheroids. The regulation is further supported by a positive correlation between ERα36 and 14-3-3τ expression in human breast cancers. ERα36 can antagonize ERα66 and inhibit ERα66 expression. Isoform-specific depletion of ERα36 blocks the ER conversion and EMT induced by 14-3-3τ overexpression in tumor spheroids, thus establishing ERα36 as a key mediator in 14-3-3τ-driven ER loss and EMT. ERα36 promoter is repressed by GATA3, which can be phosphorylated by AKT at consensus binding sites for 14-3-3. Upon AKT activation, 14-3-3τ binds phosphorylated GATA3 and facilitates the degradation of GATA3 causing GATA3 to lose transcriptional control over its target genes ERα66 and ERα36. We also demonstrate a role for the collaboration between 14-3-3τ and AKT in ERα36 induction and endocrine therapy resistance by three-dimensional spheroid and tamoxifen treatment models in MCF7 and T47D ER+ breast cancer cells. Thus, the 14-3-3τ-ERα36 regulation provides a previously unrecognized mechanism for ER loss and endocrine therapy failure.
Collapse
Affiliation(s)
- Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Yang Xiao
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
4
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Nagel A, Popeda M, Muchlinska A, Sadej R, Szade J, Zielinski J, Skokowski J, Niemira M, Kretowski A, Markiewicz A, Zaczek AJ. ERα36-High Cancer-Associated Fibroblasts as an Unfavorable Factor in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14082005. [PMID: 35454913 PMCID: PMC9024776 DOI: 10.3390/cancers14082005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment (TME). Estrogen receptor alpha 36 (ERα36), the alternatively spliced variant of ERα, is described as an unfavorable factor when expressed in cancer cells. ERα can be expressed also in CAFs; however, the role of ERα36 in CAFs is unknown. Methods: Four CAF cultures were isolated from chemotherapy-naïve BC patients and characterized for ERα36 expression and the NanoString gene expression panel using isolated RNA. Conditioned media from CAF cultures were used to assess the influence of CAFs on triple-negative breast cancer (TNBC) cells using a matrigel 3D culture assay. Results: We found that ERα36high CAFs significantly induced the branching of TNBC cells in vitro (p < 0.001). They also produced a set of pro-tumorigenic cytokines compared to ERα36low CAFs, among which hepatocyte growth factor (HGF) was the main inducer of TNBC cell invasive phenotype in vitro (p < 0.001). Tumor stroma rich in ERα36high CAFs was correlated with high Ki67 expression (p = 0.041) and tumor-associated macrophages markers (CD68 and CD163, p = 0.041 for both). HGF was found to be an unfavorable prognostic factor in TCGA database analysis (p = 0.03 for DFS and p = 0.04 for OS). Conclusions: Breast cancer-associated fibroblasts represent distinct subtypes based on ERα36 expression. We propose that ERα36high CAFs could account for an unfavorable prognosis for TNBC patients.
Collapse
Affiliation(s)
- Anna Nagel
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Anna Muchlinska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Zielinski
- Department of Surgical Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.Z.); (J.S.)
| | - Jaroslaw Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.Z.); (J.S.)
- Department of Medical Laboratory Diagnostics-Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15–276 Bialystok, Poland; (M.N.); (A.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15–276 Bialystok, Poland; (M.N.); (A.K.)
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Anna J. Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
- Correspondence: ; Tel.: +48–58-349–14-38
| |
Collapse
|
6
|
Role of Persistent Organic Pollutants in Breast Cancer Progression and Identification of Estrogen Receptor Alpha Inhibitors Using In-Silico Mining and Drug-Drug Interaction Network Approaches. BIOLOGY 2021; 10:biology10070681. [PMID: 34356536 PMCID: PMC8301456 DOI: 10.3390/biology10070681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/28/2023]
Abstract
Simple Summary The role of persistent organic pollutants (POPs) in breast cancer progression and their bioaccumulation in adipose tissue has been reported. We used a computational approach to study molecular interactions of POPs with breast cancer proteins and identified natural and synthetic compounds to inhibit these interactions. Moreover, for comparative analysis, standard drugs and screened compounds were also docked against estrogen receptor alpha (ERα) and identification of the finest inhibitor was performed using in-silico mining and drug-drug interaction (DDI) network approaches. Based on scoring values, short-chained chlorinated paraffins demonstrated strong interactions with ERα compared to organo-chlorines and PCBs. Synthetic and natural compounds demonstrating strong associations with the active site of the ERα protein could be potential candidates to treat breast cancer specifically caused by POPs and other organic toxins and can be used as an alternative to standard drugs. Abstract The strong association between POPs and breast cancer in humans has been suggested in various epidemiological studies. However, the interaction of POPs with the ERα protein of breast cancer, and identification of natural and synthetic compounds to inhibit this interaction, is mysterious yet. Consequently, the present study aimed to explore the interaction between POPs and ERα using the molecular operating environment (MOE) tool and to identify natural and synthetic compounds to inhibit this association through a cluster-based approach. To validate whether our approach could distinguish between active and inactive compounds, a virtual screen (VS) was performed using actives (627 compounds) as positive control and decoys (20,818 compounds) as a negative dataset obtained from DUD-E. Comparatively, short-chain chlorinated paraffins (SCCPs), hexabromocyclododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) depicted strong interactions with the ERα protein based on the lowest-scoring values of −31.946, −18.916, −17.581 kcal/mol, respectively. Out of 7856 retrieved natural and synthetic compounds, sixty were selected on modularity bases and subsequently docked with ERα. Based on the lowest-scoring values, ZINC08441573, ZINC00664754, ZINC00702695, ZINC00627464, and ZINC08440501 (synthetic compounds), and capsaicin, flavopiridol tectorgenin, and ellagic acid (natural compounds) showed incredible interactions with the active sites of ERα, even more convening and resilient than standard breast cancer drugs Tamoxifen, Arimidex and Letrozole. Our findings confirm the role of POPs in breast cancer progression and suggest that natural and synthetic compounds with high binding affinity could be more efficient and appropriate candidates to treat breast cancer after validation through in vitro and in vivo studies.
Collapse
|
7
|
Li F, Chen Q, Yang Y, Li M, Zhang L, Yan Z, Zhang J, Wang K. ESR1 as a recurrence-related gene in intrahepatic cholangiocarcinoma: a weighted gene coexpression network analysis. Cancer Cell Int 2021; 21:225. [PMID: 33865377 PMCID: PMC8052670 DOI: 10.1186/s12935-021-01929-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant hepatic tumor and has a high postoperative recurrence rate and a poor prognosis. The key roles of most tumor recurrence-associated molecules in iCCA remain unclear. This study aimed to explore hub genes related to the postsurgical recurrence of iCCA. Method Differentially expressed genes (DEGs) between iCCA samples and normal liver samples were screened from The Cancer Genome Atlas (TCGA) database and used to construct a weighted gene coexpression network. Module-trait correlations were calculated to identify the key module related to recurrence in iCCA patients. Genes in the key module were subjected to functional enrichment analysis, and candidate hub genes were filtered through coexpression and protein–protein interaction (PPI) network analysis. Validation studies were conducted to detect the “real” hub gene. Furthermore, the biological functions and the underlying mechanism of the real hub gene in iCCA tumorigenesis and progression were determined via in vitro experiments. Results A total of 1019 DEGs were filtered and used to construct four coexpression modules. The red module, which showed the highest correlations with the recurrence status, family history, and day to death of patients, was identified as the key module. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that genes in the red module were enriched in genes and pathways related to tumorigenesis and tumor progression. We performed validation studies and identified estrogen receptor 1 (ESR1), which significantly impacted the prognosis of iCCA patients, as the real hub gene related to the recurrence of iCCA. The in vitro experiments demonstrated that ESR1 overexpression significantly suppressed cell proliferation, migration, and invasion, whereas ESR1 knockdown elicited opposite effects. Further investigation into the mechanism demonstrated that ESR1 acts as a tumor suppressor by inhibiting the JAK/STAT3 signaling pathway. Conclusions ESR1 was identified as the real hub gene related to the recurrence of iCCA that plays a critical tumor suppressor role in iCCA progression. ESR1 significantly impacts the prognosis of iCCA patients and markedly suppresses cholangiocarcinoma cell proliferation, migration and invasion by inhibiting JAK/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01929-5.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Qinjunjie Chen
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Yang Yang
- Department of Hepatic Surgery (VI) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Lei Zhang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Zhenlin Yan
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Kui Wang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
8
|
Şoica C, Voicu M, Ghiulai R, Dehelean C, Racoviceanu R, Trandafirescu C, Roșca OJ, Nistor G, Mioc M, Mioc A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front Endocrinol (Lausanne) 2021; 11:612396. [PMID: 33552000 PMCID: PMC7859451 DOI: 10.3389/fendo.2020.612396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex hormone-dependent cancers currently contribute to the high number of cancer-related deaths worldwide. The study and elucidation of the molecular mechanisms underlying the progression of these tumors was a double-edged sword, leading to the expansion and development of new treatment options, with the cost of triggering more aggressive, therapy resistant relapses. The interaction of androgen, estrogen and progesterone hormones with specific receptors (AR, ER, PR) has emerged as a key player in the development and progression of breast, ovarian, prostate and endometrium cancers. Sex hormone-dependent cancers share a common and rather unique carcinogenesis mechanism involving the active role of endogenous and exogenous sex hormones to maintain high mitotic rates and increased cell proliferation thus increasing the probability of aberrant gene occurrence and accumulation highly correlated with abnormal cell division and the occurrence of malignant phenotypes. Cancer related hormone therapy has evolved, currently being associated with the blockade of other signaling pathways often associated with carcinogenesis and tumor progression in cancers, with promising results. However, despite the established developments, there are still several shortcomings to be addressed. Triterpenes are natural occurring secondary metabolites biosynthesized by various pathways starting from squalene cyclization. Due to their versatile therapeutic potential, including the extensively researched antiproliferative effect, these compounds are most definitely a cornerstone in the research and development of new natural/semisynthetic anticancer therapies. The present work thoroughly describes the ongoing research related to the antitumor activity of triterpenes in sex hormone-dependent cancers. Also, the current review highlights both the biological activity of various triterpenoid compounds and their featured mechanisms of action correlated with important chemical structural features.
Collapse
Affiliation(s)
- Codruţa Şoica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Janina Roșca
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Vascular Surgery, Pius Brinzeu Timisoara City Emergency Clinical Hospital, Timisoara, Romania
| | - Gabriela Nistor
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
9
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|