1
|
Wang F, Li Z, Wu Q, Guo Y, Wang J, Luo H, Zhou Y. Floral Response to Heat: A Study of Color and Biochemical Adaptations in Purple Chrysanthemums. PLANTS (BASEL, SWITZERLAND) 2024; 13:1865. [PMID: 38999704 PMCID: PMC11243879 DOI: 10.3390/plants13131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Chrysanthemums are among the world's most popular cut flowers, with their color being a key ornamental feature. The formation of these colors can be influenced by high temperatures. However, the regulatory mechanisms that control the fading of chrysanthemum flower color under high-temperature stress remain unclear. This study investigates the impact of high temperatures on the color and biochemical responses of purple chrysanthemums. Four purple chrysanthemum varieties were exposed to both normal and elevated temperature conditions. High-temperature stress elicited distinct responses among the purple chrysanthemum varieties. 'Zi Feng Che' and 'Chrystal Regal' maintained color stability, whereas 'Zi Hong Tuo Gui' and 'Zi lian' exhibited significant color fading, particularly during early bloom stages. This fading was associated with decreased enzymatic activities, specifically of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), indicating a critical period of color development under heat stress. Additionally, the color fading of 'Zi Lian' was closely related to the increased activity of the peroxidase (POD) and polyphenol oxidase (PPO). Conversely, a reduction in β-glucosidase (βG) activity may contribute significantly to the color steadfastness of 'Zi Feng Che'. The genes Cse_sc027584.1_g010.1 (PPO) and Cse_sc031727.1_g010.1 (POD) might contribute to the degradation of anthocyanins in the petals of 'Zi Hong Tuo Gui' and 'Zi Lian' under high-temperature conditions, while simultaneously maintaining the stability of anthocyanins in 'Zi Feng Che' and 'Chrystal Regal' at the early bloom floral stage. The findings of this research provide new insights into the physiological and biochemical mechanisms by which chrysanthemum flower color responds to high-temperature stress.
Collapse
Affiliation(s)
- Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Zhimei Li
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Qing Wu
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Yanhong Guo
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Jun Wang
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Honghui Luo
- College of Horticulture and Landscape Architecture, Zhongkai Agricultural Engineering College, Guangzhou 510408, China
| | - Yiwei Zhou
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Zhou X, Wang X, Wei H, Zhang H, Wu Q, Wang L. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea 'Feitian 2'. BMC PLANT BIOLOGY 2024; 24:370. [PMID: 38714932 PMCID: PMC11075258 DOI: 10.1186/s12870-024-05078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.
Collapse
Affiliation(s)
- Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Huijin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Qian Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Cui X, Qin X, Liu Y, Zhang Y, Bao H, Hu Y, Shen X. Analysis of Flavonoid Metabolism during the Process of Petal Discoloration in Three Malus Crabapple Cultivars. ACS OMEGA 2022; 7:37304-37314. [PMID: 36312389 PMCID: PMC9608404 DOI: 10.1021/acsomega.2c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Malus crabapple has high ornamental and ecological value. Here, the flavonoids in the petals of three pink Malus crabapple cultivars, Malus 'Strawberry Parfait' (GD), M. 'Pink Spire' (FY), and M. 'Hongyi' (HY), at the bud stage (flower buds are swollen, and the pistils and stamens are about to appear; L), full bloom stage (the flowers are fully open, and the stigma and anthers have recently appeared; S), and end bloom stage (the stigma and anthers are dry; M) were identified, and their abundances were determined. First, Kodak Color Control Patches were used to describe the colors of petals, and a colorimeter was used to determine the phenotypic values of flower colors. Flavonoids were determined using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In all three crabapple cultivars, the red and yellow hues of the petals gradually disappeared, the color of the flowers changed from bright to dull, and the petals gradually faded. The extent of fading of the red hue of the petals was highest in GD, followed by FY and HY. A total of 302 metabolites were detected in the three cultivars. The content of total flavonoids in the three cultivars significantly differed, but there were no significant differences among species. The total flavonoid content of the three crabapple varieties was highest in HY, followed by FY and GD. The content of the anthocyanins delphinidin-3-O-sophoricoside-5-O-glucoside, pelargonidin-3-O-(6″-O-malonyl)glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside, and cyanidin-3-O-arabinoside decreased significantly, which resulted in the discoloration of GD petals from L to M. The flavonoids and flavonols in FY might interact with anthocyanins in metabolic pathways. The content of these five anthocyanins decreased slowly, which resulted in the weaker discoloration of FY and HY compared with GD. The content of the five anthocyanins in HY did not decrease significantly, but the content of chalcone increased significantly, which might facilitate the production of anthocyanin auxiliary pigments and result in less pronounced fading of the petals. Cyanidin-3-O-arabinoside and pelargonidin-3-O-glucoside were the key flavonoids of the three crabapple cultivars. The total content and changes in anthocyanins were the key factors affecting petal color development and fading. Nonanthocyanin polyphenols, such as flavonoids, flavonols, and chalcone, are auxiliary pigments that affect petal fading. Overall, the results of this study provide new insights into the mechanism underlying the fading of the color of Malus crabapple flowers, and these new insights could aid the breeding of cultivars with different flower colors.
Collapse
Affiliation(s)
- Xueli Cui
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xin Qin
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yangbo Liu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yawen Zhang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Huaixin Bao
- Daiyue
District Agriculture and Rural Affairs Bureau, Tai’an, Shandong 271000, China
| | - Yanli Hu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang Shen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
4
|
Changes in Fruit Quality Phytochemicals of Late-Mature Peach ‘Yonglian No.1’ during Storage. Molecules 2022; 27:molecules27196319. [PMID: 36234856 PMCID: PMC9572855 DOI: 10.3390/molecules27196319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the changes in quality parameters and sensory-influencing parameters from the peel, red flesh, and white flesh of ‘Yonglian No.1’ peach fruits were analyzed during cold storage. The results indicated that the contents of total soluble solids (TSS), soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids, as well as the good fruit rate varied depending on the storage stages and storage treatments. The peach fruits in MAP stored for 50 days had favorable exterior qualities, a good fruit rate of 100%, and a higher content of total soluble solids (TSS) at 12.6%. MAP was significantly effective at maintaining fruit firmness, the content of TSS, soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids. Among the derivatives of anthocyanin, both cyanidin and pelargonidin were found in the peel, with a content of 33.45 mg/kg FW and 1.82 mg/kg FW, respectively. However, cyanidin was detected in the flesh with a content of 40.42 mg/kg FW. In the present work, the differences regarding phytochemical profiles and physical properties were mainly correlated with the storage stages and storage treatments of peach fruit. ‘Yonglian No.1’ had higher levels of health-promoting compounds during storage and maintained favorable quality.
Collapse
|
5
|
Li M, Cao Y, Debnath B, Yang H, Kui X, Qiu D. Cloning and Expression Analysis of Flavonoid 3', 5'-Hydroxylase Gene from Brunfelsia acuminata. Genes (Basel) 2021; 12:genes12071086. [PMID: 34356102 PMCID: PMC8304711 DOI: 10.3390/genes12071086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
The full-length cDNA sequence of F3′5′H gene from the Brunfelsia acuminata was obtained by RT-PCR and RACE, whose GenBank accession number is JQ678765. The sequence contains a 1521 bp open reading frame, 120 bp 5′UTR and 61 bp 3′UTR, encoding a total of 506 amino acids. The molecular mass of the predicted protein is 56.47 kDa with an estimated pI of 8.78, respectively. Sequence alignment showed that the amino acid sequence of F3′5′H was 91%, 87% and 84% with that of Petunia × hybrida, Nierembergia sp., Solanum tuberosum, respectively. Real-time quantitative PCR analysis showed that the expression of F3′5′H gene was different in petals of different days, which was the highest expression level on day 0 and significantly higher than other days. The results indicated that F3′5′H might play key role in flower color regulation and provide a theoretical reference for blue flower molecular breeding.
Collapse
Affiliation(s)
- Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.C.); (H.Y.); (X.K.)
| | - Yuting Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.C.); (H.Y.); (X.K.)
| | - Biswojit Debnath
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Hongjuan Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.C.); (H.Y.); (X.K.)
| | - Xiaohua Kui
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.C.); (H.Y.); (X.K.)
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.C.); (H.Y.); (X.K.)
- Correspondence: ; Tel.: +86-136-0594-8966
| |
Collapse
|
6
|
Komatsu S. Plant Proteomic Research 2.0: Trends and Perspectives. Int J Mol Sci 2019; 20:ijms20102495. [PMID: 31117165 PMCID: PMC6566193 DOI: 10.3390/ijms20102495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|