1
|
Dilley JE, Seetharam A, Ding X, Bello MA, Shutter J, Burr DB, Natoli RM, McKinley TO, Sankar U. CAMKK2 is upregulated in primary human osteoarthritis and its inhibition protects against chondrocyte apoptosis. Osteoarthritis Cartilage 2023; 31:908-918. [PMID: 36858195 PMCID: PMC10272098 DOI: 10.1016/j.joca.2023.02.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis. MATERIALS AND METHODS Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting. RESULTS CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins. CONCLUSIONS CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.
Collapse
Affiliation(s)
- J E Dilley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - A Seetharam
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - X Ding
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - M A Bello
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - J Shutter
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - D B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - R M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - T O McKinley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - U Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Li Y, Chen L, Zheng D, Liu JX, Liu C, Qi SH, Hu PC, Yang XF, Min JW. Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1103265. [PMID: 36843928 PMCID: PMC9947717 DOI: 10.3389/fphar.2023.1103265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is considered a major cause of death and long-term neurological injury in newborns. Studies have demonstrated that oxidative stress and apoptosis play a major role in the progression of neonatal HIE. Echinocystic acid (EA), a natural plant extract, shows great antioxidant and antiapoptotic activities in various diseases. However, it has not yet been reported whether EA exerts a neuroprotective effect against neonatal HIE. Therefore, this study was undertaken to explore the neuroprotective effects and potential mechanisms of EA in neonatal HIE using in vivo and in vitro experiments. In the in vivo study, a hypoxic-ischemic brain damage (HIBD) model was established in neonatal mice, and EA was administered immediately after HIBD. Cerebral infarction, brain atrophy and long-term neurobehavioral deficits were measured. Hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dihydroethidium (DHE) staining were performed, and the contents of malondialdehyde (MDA) and glutathione (GSH) were detected. In the in vitro study, an oxygen-glucose deprivation/reperfusion (OGD/R) model was employed in primary cortical neurons, and EA was introduced during OGD/R. Cell death and cellular ROS levels were determined. To illustrate the mechanism, the PI3K inhibitor LY294002 and Nrf2 inhibitor ML385 were used. The protein expression levels of p-PI3K, PI3K, p-Akt, Akt, Nrf2, NQO1, and HO-1 were measured by western blotting. The results showed that EA treatment significantly reduced cerebral infarction, attenuated neuronal injury, and improved brain atrophy and long-term neurobehavioral deficits in neonatal mice subjected to HIBD. Meanwhile, EA effectively increased the survival rate in neurons exposed to OGD/R and inhibited oxidative stress and apoptosis in both in vivo and in vitro studies. Moreover, EA activated the PI3K/Akt/Nrf2 pathway in neonatal mice following HIBD and in neurons after OGD/R. In conclusion, these results suggested that EA alleviated HIBD by ameliorating oxidative stress and apoptosis via activation of the PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Da Zheng
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jian-Xia Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chao Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shao-Hua Qi
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX, United States
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China,*Correspondence: Jia-Wei Min,
| |
Collapse
|
3
|
Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, Zheng X, Zeng W. Dexmedetomidine Alleviates Hypoxia-Induced Synaptic Loss and Cognitive Impairment via Inhibition of Microglial NOX2 Activation in the Hippocampus of Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643171. [PMID: 33628369 PMCID: PMC7895593 DOI: 10.1155/2021/6643171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Perinatal hypoxia is a universal cause of death and neurological deficits in neonates worldwide. Activation of microglial NADPH oxidase 2 (NOX2) leads to oxidative stress and neuroinflammation, which may contribute to hypoxic damage in the developing brain. Dexmedetomidine has been reported to exert potent neuroprotection in several neurological diseases, but the mechanism remains unclear. We investigated whether dexmedetomidine acts through microglial NOX2 to reduce neonatal hypoxic brain damage. METHODS The potential role of microglial NOX2 in dexmedetomidine-mediated alleviation of hypoxic damage was evaluated in cultured BV2 microglia and neonatal rats subjected to hypoxia. In vivo, neonatal rats received dexmedetomidine (25 μg/kg, i.p.) 30 min before or immediately after hypoxia (5% O2, 2 h). Apocynin-mediated NOX inhibition and lentivirus-mediated NOX2 overexpression were applied to further assess the involvement of microglial NOX2 activation. RESULTS Pre- or posttreatment with dexmedetomidine alleviated hypoxia-induced cognitive impairment, restored damaged synapses, and increased postsynaptic density-95 and synaptophysin protein expression following neonatal hypoxia. Importantly, dexmedetomidine treatment suppressed hypoxia-induced microglial NOX2 activation and subsequent oxidative stress and the neuroinflammatory response, as reflected by reduced 4-hydroxynonenal and ROS accumulation, and decreased nuclear NF-κB p65 and proinflammatory cytokine levels in cultured BV2 microglia and the developing hippocampus. In addition, treating primary hippocampal neurons with conditioned medium (CM) from hypoxia-activated BV2 microglia resulted in neuronal damage, which was alleviated by CM from dexmedetomidine-treated microglia. Moreover, the neuroprotective effect of dexmedetomidine was reversed in NOX2-overexpressing BV2 microglia and diminished in apocynin-pretreated neonatal rats. CONCLUSION Dexmedetomidine targets microglial NOX2 to reduce oxidative stress and neuroinflammation and subsequently protects against hippocampal synaptic loss following neonatal hypoxia.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
4
|
Gu Q, Liu H, Ma J, Yuan J, Li X, Qiao L. A Narrative Review of Circular RNAs in Brain Development and Diseases of Preterm Infants. Front Pediatr 2021; 9:706012. [PMID: 34621711 PMCID: PMC8490812 DOI: 10.3389/fped.2021.706012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) generated by back-splicing are the vital class of non-coding RNAs (ncRNAs). Circular RNAs are highly abundant and stable in eukaryotes, and many of them are evolutionarily conserved. They are blessed with higher expression in mammalian brains and could take part in the regulation of physiological and pathophysiological processes. In addition, premature birth is important in neurodevelopmental diseases. Brain damage in preterm infants may represent the main cause of long-term neurodevelopmental disorders in surviving babies. Until recently, more and more researches have been evidenced that circRNAs are involved in the pathogenesis of encephalopathy of premature. We aim at explaining neuroinflammation promoting the brain damage. In this review, we summarize the current findings of circRNAs properties, expression, and functions, as well as their significances in the neurodevelopmental impairments, white matter damage (WMD) and hypoxic-ischemic encephalopathy (HIE). So we think that circRNAs have a direct impact on neurodevelopment and brain injury, and will be a powerful tool in the repair of the injured immature brain. Even though their exact roles and mechanisms of gene regulation remain elusive, circRNAs have potential applications as diagnostic biomarkers for brain damage and the target for neuroprotective intervention.
Collapse
Affiliation(s)
- Qianying Gu
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Heng Liu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Ma
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiaming Yuan
- Department of Pediatrics, Tianchang People's Hospital, Anhui, China
| | - Xinger Li
- Department of Biobank, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lixing Qiao
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|