1
|
Silvestro M, Rivera CF, Alebrahim D, Vlahos J, Pratama MY, Lu C, Tang C, Harpel Z, Sleiman Tellaoui R, Zias AL, Maldonado DJ, Byrd D, Attur M, Mignatti P, Ramkhelawon B. The Nonproteolytic Intracellular Domain of Membrane-Type 1 Matrix Metalloproteinase Coordinately Modulates Abdominal Aortic Aneurysm and Atherosclerosis in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:1244-1253. [PMID: 36073351 PMCID: PMC9993845 DOI: 10.1161/atvbaha.122.317686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MT1-MMP (membrane-type 1 matrix metalloproteinase, MMP-14) is a transmembrane-anchored protein with an extracellular proteinase domain and a cytoplasmic tail devoid of proteolytic functions but capable of mediating intracellular signaling that regulates tissue homeostasis. MT1-MMP extracellular proteolytic activity has been shown to regulate pathological remodeling in aortic aneurysm and atherosclerosis. However, the role of the nonproteolytic intracellular domain of MT1-MMP in vascular remodeling in abdominal aortic aneurysms (AAA) is unknown. METHODS We generated a mutant mouse that harbors a point mutation (Y573D) in the MT1-MMP cytoplasmic domain that abrogates the MT1-MMP signaling function without affecting its proteolytic activity. These mice and their control wild-type littermates were subjected to experimental AAA modeled by angiotensin II infusion combined with PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression and high-cholesterol feeding. RESULTS The mutant mice developed more severe AAA than the control mice, with concomitant generation of intraaneurysmal atherosclerotic lesions and dramatically increased macrophage infiltration and elastin degradation. Aortic lesion-associated and bone marrow-derived macrophages from the mutant mice exhibited an enhanced inflammatory state and expressed elevated levels of proinflammatory Netrin-1, a protein previously demonstrated to promote both atherosclerosis and AAA. CONCLUSIONS Our findings show that the cytoplasmic domain of MT1-MMP safeguards from AAA and atherosclerotic plaque development through a proteolysis-independent signaling mechanism associated with Netrin-1 expression. This unexpected function of MT1-MMP unveils a novel mechanism of synchronous onset of AAA and atherogenesis and highlights its importance in the control of vascular wall homeostasis.
Collapse
Affiliation(s)
- Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Cristobal F Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Dornazsadat Alebrahim
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Cuijie Lu
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.).,Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York
| | - Claudia Tang
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Zander Harpel
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Rayan Sleiman Tellaoui
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Ariadne L Zias
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Delphina J Maldonado
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Devon Byrd
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York
| | - Paolo Mignatti
- Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York.,Department of Cell Biology (P.M., B.R.), New York University Langone Medical Center, New York
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.).,Department of Cell Biology (P.M., B.R.), New York University Langone Medical Center, New York
| |
Collapse
|
3
|
Ziegon L, Schlegel M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int J Mol Sci 2021; 23:275. [PMID: 35008701 PMCID: PMC8745333 DOI: 10.3390/ijms23010275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Netrins belong to the family of laminin-like secreted proteins, which guide axonal migration and neuronal growth in the developing central nervous system. Over the last 20 years, it has been established that netrin-1 acts as a chemoattractive or chemorepulsive cue in diverse biological processes far beyond neuronal development. Netrin-1 has been shown to play a central role in cell adhesion, cell migration, proliferation, and cell survival in neuronal and non-neuronal tissue. In this context, netrin-1 was found to orchestrate organogenesis, angiogenesis, tumorigenesis, and inflammation. In inflammation, as in neuronal development, netrin-1 plays a dichotomous role directing the migration of leukocytes, especially monocytes in the inflamed tissue. Monocyte-derived macrophages have long been known for a similar dual role in inflammation. In response to pathogen-induced acute injury, monocytes are rapidly recruited to damaged tissue as the first line of immune defense to phagocyte pathogens, present antigens to initiate the adaptive immune response, and promote wound healing in the resolution phase. On the other hand, dysregulated macrophages with impaired phagocytosis and egress capacity accumulate in chronic inflammation sites and foster the maintenance-and even the progression-of chronic inflammation. In this review article, we will highlight the dichotomous roles of netrin-1 and its impact on acute and chronic inflammation.
Collapse
Affiliation(s)
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|