1
|
Román ÁC, Benítez DA, Díaz-Pizarro A, Del Valle-Del Pino N, Olivera-Gómez M, Cumplido-Laso G, Carvajal-González JM, Mulero-Navarro S. Next generation sequencing technologies to address aberrant mRNA translation in cancer. NAR Cancer 2024; 6:zcae024. [PMID: 38751936 PMCID: PMC11094761 DOI: 10.1093/narcan/zcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In this review, we explore the transformative impact of next generation sequencing technologies in the realm of translatomics (the study of how translational machinery acts on a genome-wide scale). Despite the expectation of a direct correlation between mRNA and protein content, the complex regulatory mechanisms that affect this relationship remark the limitations of standard RNA-seq approaches. Then, the review characterizes crucial techniques such as polysome profiling, ribo-seq, trap-seq, proximity-specific ribosome profiling, rnc-seq, tcp-seq, qti-seq and scRibo-seq. All these methods are summarized within the context of cancer research, shedding light on their applications in deciphering aberrant translation in cancer cells. In addition, we encompass databases and bioinformatic tools essential for researchers that want to address translatome analysis in the context of cancer biology.
Collapse
Affiliation(s)
- Ángel-Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Dixan A Benítez
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Alba Díaz-Pizarro
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Nuria Del Valle-Del Pino
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Marcos Olivera-Gómez
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Jose M Carvajal-González
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura. Avda. de Elvas s/n, 06071 Badajoz, Spain
| |
Collapse
|
2
|
Wang M, Zhang L, Yang H, Lu H. Translatome and transcriptome profiling of neonatal mice hippocampus exposed to sevoflurane anesthesia. Heliyon 2024; 10:e28876. [PMID: 38707353 PMCID: PMC11066607 DOI: 10.1016/j.heliyon.2024.e28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Exposure to anesthesia in early life may cause severe damage to the brain and lead to cognitive impairment. The underlying mechanisms, which have only been investigated in a limited scale, remains largely elusive. We performed translatome and transcriptome sequencing together for the first time in hippocampus of neonatal mice that were exposed to sevoflurane. We treated a group of neonatal mice with 2.5 % sevoflurane for 2 h on day 6, 7, 8, 9 and treated another group on day 6, 7. We performed behavioral study after day 30 for both groups and the control to evaluate the cognitive impairment. On day 36, we collected translatome and transcriptome from the hippocampus in the two groups, compared the gene expression levels between the groups and the control, and validated the results with RT-qPCR. We identified 1750 differentially expressed genes (DEGs) from translatome comparison and 1109 DEGs from transcriptome comparison. As expected, translatome-based DEGs significantly overlapped with transcriptome-based DEGs, and functional enrichment analysis generated similar enriched cognition-related GO terms and KEGG pathways. However, for many genes like Hspa5, their alterations in translatome differed remarkably from those in transcriptome, and Western blot results were largely concordant with the former, suggesting that translational regulation plays a significant role in cellular response to sevoflurane. Our study revealed global alterations in translatome and transcriptome of mice hippocampus after neonatal exposure to sevoflurane anesthesia and highlighted the importance of translatome analysis in understanding the mechanisms responsible for anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hecheng Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
3
|
Munro J, Gillen SL, Mitchell L, Laing S, Karim SA, Rink CJ, Waldron JA, Bushell M. Optimisation of Sample Preparation from Primary Mouse Tissue to Maintain RNA Integrity for Methods Examining Translational Control. Cancers (Basel) 2023; 15:3985. [PMID: 37568801 PMCID: PMC10417042 DOI: 10.3390/cancers15153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The protein output of different mRNAs can vary by two orders of magnitude; therefore, it is critical to understand the processes that control gene expression operating at the level of translation. Translatome-wide techniques, such as polysome profiling and ribosome profiling, are key methods for determining the translation rates occurring on specific mRNAs. These techniques are now widely used in cell lines; however, they are underutilised in tissues and cancer models. Ribonuclease (RNase) expression is often found to be higher in complex primary tissues in comparison to cell lines. Methods used to preserve RNA during lysis often use denaturing conditions, which need to be avoided when maintaining the interaction and position of the ribosome with the mRNA is required. Here, we detail the cell lysis conditions that produce high-quality RNA from several different tissues covering a range of endogenous RNase expression levels. We highlight the importance of RNA integrity for accurate determination of the global translation status of the cell as determined by polysome gradients and discuss key aspects to optimise for accurate assessment of the translatome from primary mouse tissue.
Collapse
Affiliation(s)
- June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah L. Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah Laing
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Saadia A. Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Curtis J. Rink
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Joseph A. Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Lelong EIJ, Khelifi G, Adjibade P, Joncas FH, Grenier St-Sauveur V, Paquette V, Gris T, Zoubeidi A, Audet-Walsh E, Lambert JP, Toren P, Mazroui R, Hussein SMI. Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer 2022; 4:zcac034. [PMID: 36348939 PMCID: PMC9634437 DOI: 10.1093/narcan/zcac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Emeline I J Lelong
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Valérie Grenier St-Sauveur
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Virginie Paquette
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Typhaine Gris
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia V6H 3Z6, Canada
| | - Etienne Audet-Walsh
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Paul Toren
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| |
Collapse
|
5
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
7
|
Attwood KM, Robichaud A, Westhaver LP, Castle EL, Brandman DM, Balgi AD, Roberge M, Colp P, Croul S, Kim I, McCormick C, Corcoran JA, Weeks A. Raloxifene prevents stress granule dissolution, impairs translational control and promotes cell death during hypoxia in glioblastoma cells. Cell Death Dis 2020; 11:989. [PMID: 33203845 PMCID: PMC7673037 DOI: 10.1038/s41419-020-03159-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, and it has a uniformly poor prognosis. Hypoxia is a feature of the GBM microenvironment, and previous work has shown that cancer cells residing in hypoxic regions resist treatment. Hypoxia can trigger the formation of stress granules (SGs), sites of mRNA triage that promote cell survival. A screen of 1120 FDA-approved drugs identified 129 candidates that delayed the dissolution of hypoxia-induced SGs following a return to normoxia. Amongst these candidates, the selective estrogen receptor modulator (SERM) raloxifene delayed SG dissolution in a dose-dependent manner. SG dissolution typically occurs by 15 min post-hypoxia, however pre-treatment of immortalized U251 and U3024 primary GBM cells with raloxifene prevented SG dissolution for up to 2 h. During this raloxifene-induced delay in SG dissolution, translational silencing was sustained, eIF2α remained phosphorylated and mTOR remained inactive. Despite its well-described role as a SERM, raloxifene-mediated delay in SG dissolution was unaffected by co-administration of β-estradiol, nor did β-estradiol alone have any effect on SGs. Importantly, the combination of raloxifene and hypoxia resulted in increased numbers of late apoptotic/necrotic cells. Raloxifene and hypoxia also demonstrated a block in late autophagy similar to the known autophagy inhibitor chloroquine (CQ). Genetic disruption of the SG-nucleating proteins G3BP1 and G3BP2 revealed that G3BP1 is required to sustain the raloxifene-mediated delay in SG dissolution. Together, these findings indicate that modulating the stress response can be used to exploit the hypoxic niche of GBM tumors, causing cell death by disrupting pro-survival stress responses and control of protein synthesis.
Collapse
Affiliation(s)
| | - Aaron Robichaud
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | | | - Elizabeth L Castle
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - David M Brandman
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Aruna D Balgi
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michel Roberge
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Sidney Croul
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Inhwa Kim
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer A Corcoran
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adrienne Weeks
- Department of Surgery, Dalhousie University, Halifax, NS, Canada.
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Lupinacci FCS, Ferreira EN, Roffe M, Bellato HM, Carraro DM, Hajj GNM. Effects of tumor biobank storage on polysome stability. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41241-019-0077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|