1
|
Deryusheva EI, Machulin AV, Surin AA, Kravchenko SV, Surin AK, Galzitskaya OV. RNA-Binding S1 Domain in Bacterial, Archaeal and Eukaryotic Proteins as One of the Evolutionary Markers of Symbiogenesis. Int J Mol Sci 2024; 25:13057. [PMID: 39684768 DOI: 10.3390/ijms252313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The RNA-binding S1 domain is a β-barrel with a highly conserved RNA-binding site on its surface. This domain is an important part of the structures of different bacterial, archaeal, and eukaryotic proteins. A distinctive feature of the S1 domain is multiple presences (structural repeats) in proteins and protein complexes. Here, we have analyzed all available protein sequences in the UniProt database to obtain data on the distribution of bacterial, eukaryotic and archaeal proteins containing the S1 domain. Mainly, the S1 domain is found in bacterial proteins with the number of domains varying from one to eight. Eukaryotic proteins contain from one to fifteen S1 domains, while in archaeal proteins, only one S1 domain is identified. Analysis of eukaryotic proteins containing S1 domains revealed a group of chloroplast S1 ribosomal proteins (ChRpS1) with characteristic properties of bacterial S1 ribosomal proteins (RpS1) from the Cyanobacteria. Also, in a separate group, chloroplast and mitochondrial elongation factor Ts containing two S1 structural domains were assigned. For mitochondrial elongation factor Ts, the features of S1 in comparison with the RpS1 from Cyanobacteria phylum and the Alphaproteobacteria class were revealed. The data obtained allow us to consider the S1 domain as one of the evolutionary markers of the symbiogenesis of bacterial and eukaryotic organisms.
Collapse
Affiliation(s)
- Evgenia I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey A Surin
- Faculty of Informatics and Computer Engineering, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Sergey V Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K Surin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V Galzitskaya
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
2
|
Machulin AV, Deryusheva EI, Galzitskaya OV. Variation in base composition, structure-function relationships, and origins of structural repetition in bacterial rpsA gene. Biosystems 2024; 238:105196. [PMID: 38537772 DOI: 10.1016/j.biosystems.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Protein domain repeats are known to arise due to tandem duplications of internal genes. However, the understanding of the underlying mechanisms of this process is incomplete. The goal of this work was to investigate the mechanism of occurrence of repeat expansion based on studying the sequences of 1324 rpsA genes of bacterial S1 ribosomal proteins containing different numbers of S1 structural domains. The rpsA gene encodes ribosomal S1 protein, which is essential for cell viability as it interacts with both mRNA and proteins. Gene ontology (GO) analysis of S1 domains in ribosomal S1 proteins revealed that bacterial protein sequences in S1 mainly have 3 types of molecular functions: RNA binding activity, nucleic acid activity, and ribosome structural component. Our results show that the maximum value of rpsA gene identity for full-length proteins was found for S1 proteins containing six structural domains (58%). Analysis of consensus sequences showed that parts of the rpsA gene encoding separate S1 domains have no a strictly repetitive structure between groups containing different numbers of S1 domains. At the same time, gene regions encoding some conserved residues that form the RNA-binding site remain conserved. The detected phylogenetic similarity suggests that the proposed fold of the rpsA translation initiation region of Escherichia coli has functional value and is important for translational control of rpsA gene expression in other bacterial phyla, but not only in gamma Proteobacteria.
Collapse
Affiliation(s)
- Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Evgeniya I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
3
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
4
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
6
|
Galzitskaya OV. Exploring Amyloidogenicity of Peptides From Ribosomal S1 Protein to Develop Novel AMPs. Front Mol Biosci 2021; 8:705069. [PMID: 34490350 PMCID: PMC8416663 DOI: 10.3389/fmolb.2021.705069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) and similar compounds are potential candidates for combating antibiotic-resistant bacteria. The hypothesis of directed co-aggregation of the target protein and an amyloidogenic peptide acting as an antimicrobial peptide was successfully tested for peptides synthesized on the basis of ribosomal S1 protein in the bacterial culture of T. thermophilus. Co-aggregation of the target protein and amyloidogenic peptide was also tested for the pathogenic ribosomal S1 protein from P. aeruginosa. Almost all peptides that we selected as AMPs, prone to aggregation and formation of fibrils, based on the amino acid sequence of ribosomal S1 protein from E. coli, T. thermophilus, P. aeruginosa, formed amyloid fibrils. We have demonstrated that amyloidogenic peptides are not only toxic to their target cells, but also some of them have antimicrobial activity. Controlling the aggregation of vital bacterial proteins can become one of the new directions of research and form the basis for the search and development of targeted antibacterial drugs.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Laboratory of the Structure and Function of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
7
|
Grishin SY, Dzhus UF, Glukhov AS, Selivanova OM, Surin AK, Galzitskaya OV. Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein. Int J Mol Sci 2021; 22:ijms22147291. [PMID: 34298910 PMCID: PMC8305250 DOI: 10.3390/ijms22147291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa. Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in combination with high performance liquid chromatography and mass spectrometric analysis of the products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.
Collapse
Affiliation(s)
- Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Ulyana F. Dzhus
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Anatoly S. Glukhov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
8
|
Deryusheva E, Machulin A, Matyunin M, Galzitskaya O. Sequence and evolutionary analysis of bacterial ribosomal S1 proteins. Proteins 2021; 89:1111-1124. [PMID: 33843105 DOI: 10.1002/prot.26084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a "bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.
Collapse
Affiliation(s)
- Evgeniya Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Andrey Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Maxim Matyunin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Oxana Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
9
|
Grishin SY, Dzhus UF, Selivanova OM, Balobanov VA, Surin AK, Galzitskaya OV. Comparative Analysis of Aggregation of Thermus thermophilus Ribosomal Protein bS1 and Its Stable Fragment. BIOCHEMISTRY (MOSCOW) 2021; 85:344-354. [PMID: 32564739 DOI: 10.1134/s0006297920030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Functionally important multidomain bacterial protein bS1 is the largest ribosomal protein of subunit 30S. It interacts with both mRNA and proteins and is prone to aggregation, although this process has not been studied in detail. Here, we obtained bacterial strains overproducing ribosomal bS1 protein from Thermus thermophilus and its stable fragment bS1(49) and purified these proteins. Using fluorescence spectroscopy, dynamic light scattering, and high-performance liquid chromatography combined with mass spectrometric analysis of products of protein limited proteolysis, we demonstrated that disordered regions at the N- and C-termini of bS1 can play a key role in the aggregation of this protein. The truncated fragment bS1(49) was less prone to aggregation compared to the full-size bS1. The revealed properties of the studied proteins can be used to obtain protein crystals for elucidating the structure of the bS1 stable fragment.
Collapse
Affiliation(s)
- S Yu Grishin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - U F Dzhus
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - O M Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - V A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - A K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.,Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020; 21:E9552. [PMID: 33333996 PMCID: PMC7765370 DOI: 10.3390/ijms21249552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Sergei Yu. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Saikat D. Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
11
|
Grishin SY, Deryusheva EI, Machulin AV, Selivanova OM, Glyakina AV, Gorbunova EY, Mustaeva LG, Azev VN, Rekstina VV, Kalebina TS, Surin AK, Galzitskaya OV. Amyloidogenic Propensities of Ribosomal S1 Proteins: Bioinformatics Screening and Experimental Checking. Int J Mol Sci 2020; 21:E5199. [PMID: 32707977 PMCID: PMC7432502 DOI: 10.3390/ijms21155199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Structural S1 domains belong to the superfamily of oligosaccharide/oligonucleotide-binding fold domains, which are highly conserved from prokaryotes to higher eukaryotes and able to function in RNA binding. An important feature of this family is the presence of several copies of the structural domain, the number of which is determined in a strictly limited range from one to six. Despite the strong tendency for the aggregation of several amyloidogenic regions in the family of the ribosomal S1 proteins, their fibril formation process is still poorly understood. Here, we combined computational and experimental approaches for studying some features of the amyloidogenic regions in this protein family. The FoldAmyloid, Waltz, PASTA 2.0 and Aggrescan programs were used to assess the amyloidogenic propensities in the ribosomal S1 proteins and to identify such regions in various structural domains. The thioflavin T fluorescence assay and electron microscopy were used to check the chosen amyloidogenic peptides' ability to form fibrils. The bioinformatics tools were used to study the amyloidogenic propensities in 1331 ribosomal S1 proteins. We found that amyloidogenicity decreases with increasing sizes of proteins. Inside one domain, the amyloidogenicity is higher in the terminal parts. We selected and synthesized 11 amyloidogenic peptides from the Escherichia coli and Thermus thermophilus ribosomal S1 proteins and checked their ability to form amyloids using the thioflavin T fluorescence assay and electron microscopy. All 11 amyloidogenic peptides form amyloid-like fibrils. The described specific amyloidogenic regions are actually responsible for the fibrillogenesis process and may be potential targets for modulating the amyloid properties of bacterial ribosomal S1 proteins.
Collapse
Affiliation(s)
- Sergei Y Grishin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Evgeniya I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Olga M Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Elena Y Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Leila G Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Vyacheslav N Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
12
|
Simon I. Macromolecular Interactions of Disordered Proteins. Int J Mol Sci 2020; 21:ijms21020504. [PMID: 31941113 PMCID: PMC7014052 DOI: 10.3390/ijms21020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- István Simon
- Institute of Enzymology, RCNS, Lorand Eotvos Research Network, Center of Excellence of the Hungarian Academy of Sciences, Magyar Tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
13
|
Deryusheva EI, Machulin AV, Matyunin MA, Galzitskaya OV. Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules 2019; 24:E3681. [PMID: 31614904 PMCID: PMC6832287 DOI: 10.3390/molecules24203681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
S1 domain, a structural variant of one of the "oldest" OB-folds (oligonucleotide/oligosaccharide-binding fold), is widespread in various proteins in three domains of life: Bacteria, Eukaryotes, and Archaea. In this study, it was shown that S1 domains of bacterial, eukaryotic, and archaeal proteins have a low percentage of identity, which indicates the uniqueness of the scaffold and is associated with protein functions. Assessment of the predisposition of tertiary flexibility of S1 domains using computational and statistical tools showed similar structural features and revealed functional flexible regions that are potentially involved in the interaction of natural binding partners. In addition, we analyzed the relative number and distribution of S1 domains in all domains of life and established specific features based on sequences and structures associated with molecular functions. The results correlate with the presence of repeats of the S1 domain in proteins containing the S1 domain in the range from one (bacterial and archaeal) to 15 (eukaryotic) and, apparently, are associated with the need for individual proteins to increase the affinity and specificity of protein binding to ligands.
Collapse
Affiliation(s)
- Evgenia I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Maxim A Matyunin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
14
|
Machulin AV, Deryusheva EI, Selivanova OM, Galzitskaya OV. The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria. PLoS One 2019; 14:e0221370. [PMID: 31437214 PMCID: PMC6705787 DOI: 10.1371/journal.pone.0221370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including the S1 domain. An important feature of this family is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. In this study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demonstrate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacterial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About 62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteobacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Actinobacteria. Records belonging to these phyla are 33% of all records. The least represented two-domain S1 are about 0.6% of all records. The third and fourth domains for the most representative four- and six-domain S1 have the highest percentage of identity with the S1 domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addition, for these groups, the central part of S1 (the third domain) is more conserved than the terminal domains.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|