1
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
2
|
Zhang M, Xu T, Tong D, Yu X, Liu B, Jiang L, Liu K. MiR-136-5p in cancer: Roles, mechanisms, and chemotherapy resistance. Gene 2024; 909:148265. [PMID: 38346459 DOI: 10.1016/j.gene.2024.148265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression, and the deregulation of their activity has been linked to the onset and progression of a variety of human malignancies. Among these miRNAs, miR-136-5p has attracted significant attention due to its diverse roles in cancer biology. Mostly, miR-136-5p is downregulated in malignancies. It could inhibit viability, proliferation, migration, invasion and promote apoptosis of tumor cells. This review article provides a comprehensive overview of the current understanding of miR-136-5p in different sorts of human cancers: genital tumors, head and neck tumors, tumors from the digestive and urinary systems, skin cancers, neurologic tumors, pulmonary neoplasms and other cancers by discussing its molecular mechanisms, functional roles, and impact in chemotherapies. In conclusion, miR-136-5p could be a promising new biomarker and potential clinical therapeutic target.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
4
|
Shah R, Spektor TM, Weisenberger DJ, Ding H, Patil R, Amador C, Song XY, Chun ST, Inzalaco J, Turjman S, Ghiam S, Jeong-Kim J, Tolstoff S, Yampolsky SV, Sawant OB, Rabinowitz YS, Maguen E, Hamrah P, Svendsen CN, Saghizadeh M, Ljubimova JY, Kramerov AA, Ljubimov AV. Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells. Diabetologia 2023; 66:1943-1958. [PMID: 37460827 PMCID: PMC10474199 DOI: 10.1007/s00125-023-05960-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cβ; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Tanya M Spektor
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kura Oncology, Inc., Boston, MA, USA
| | | | - Hui Ding
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kunshan Xinyunda Biotech Co., Ltd., Kunshan, China
| | - Rameshwar Patil
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Basic Science, Division of Cancer Science, Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xue-Ying Song
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Jake Inzalaco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sue Turjman
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Mount Saint Mary's University, Los Angeles, CA, USA
| | - Sean Ghiam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Jiho Jeong-Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sasha Tolstoff
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Sabina V Yampolsky
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Duke University, Durham, NC, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, USA
| | - Yaron S Rabinowitz
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ezra Maguen
- American Eye Institute, Los Angeles, CA, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Clive N Svendsen
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Julia Y Ljubimova
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Ebrahimi A, Bakhshaei Shahrebabaki P, Fouladi H, Mansoori Derakhshan S. The impact of microRNAs on the resistance of breast cancer subtypes to chemotherapy. Pathol Res Pract 2023; 249:154702. [PMID: 37562283 DOI: 10.1016/j.prp.2023.154702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Breast cancer (BC) formation is primarily influenced by genetics, epigenetics and environmental factors. Aberrant Genetics and epigenetics leads to a condition known as heterogeneity. The heterogeneity of BC can be divided into several subtypes. Among the epigenetic factors, microRNAs (miRNAs) have been shown to play a crucial role in the development and progression of malignancies. These small non-coding RNAs regulate gene expression through a variety of mechanisms, resulting in either mRNA degradation or translation repression. As miRNAs directly control many proteins, genetic anomalies affect tumor metastasis, apoptosis, proliferation, and cell transportation. Consequently, miRNA dysregulations contribute not only in cancer development but also in invasiveness, proliferation rate and more importantly, drug response. Findings mostly indicate subtype-specified identical miRNA profile in BC. Among the BC subtypes, TNBC, HER2 + and luminal are the most resistant to therapy, respectively. Therapy resistance is greatly associated with miRNA expression profile. Hence, concentration of miRNA is the first marker of its role in chemotherapy response. Overexpressed miRNAs may disrupt drug efflux transporters and decrease the drug accumulation in cell. While down-regulated miRNAs which mediate drug resistance processes are mostly correlated with poor treatment response. Moreover, other mechanisms in which miRNAs play crucial roles in chemoresistance such as cell receptor mediations, dysregulation by environmental factors, DNA defects, etc. Recently, several miRNA-based treatments have shown promising results in cancer treatment. Inhibition of up-regulated miRNAs is one of these therapeutic approaches whilst transfecting cell with down-regulated miRNAs also show promising results. Moreover, drug-resistance could also be determined while in the pre-treatment phase via expression levels of miRNAs. Therefore, miRNAs provide intriguing insights and challenges in overcoming chemoresistance. In this article, we have discussed how miRNAs regulate breast cancer subtypes-specific chemoresistance.
Collapse
Affiliation(s)
- Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Peyman Bakhshaei Shahrebabaki
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Fouladi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran.
| |
Collapse
|
6
|
Kong Z, Han Q, Zhu B, Wan L, Feng E. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR-136-5p/YWHAZ axis. Thorac Cancer 2023. [PMID: 37192740 DOI: 10.1111/1759-7714.14928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most malignant cancers. Increasing evidence suggests that circular RNAs (circRNAs) are involved in breast cancer progression through sponging microRNA (miRNA). However, the underlying molecular mechanisms of circ_0069094 in breast cancer are unclear. This study aimed to reveal the effect of the circ_0069094/miR-136-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) pathway on the malignant progression of breast cancer. METHODS The quantitative real-time polymerase chain reaction and western blot were used to assess the expression of circRNA/miRNA/mRNA. The functional effects of circ_0069094 on the cell processes of breast cancer were investigated by cell counting kit-8, colony-forming assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and transwell invasion assay. The interactions among circ_0069094, miR-136-5p, and YWHAZ were assessed by dual-luciferase reporter assay. A xenograft experiment was performed to determine the effects of circ_0069094 on tumor formation. RESULTS Circ_0069094 was overexpressed in paclitaxel (PTX)-resistant breast cancer tissues and cells, and the silencing of circ_0069094 decreased tumor growth, cell proliferation and cell invasion while increasing PTX sensitivity and cell apoptosis in PTX-resistant cells. In addition, miR-136-5p was a target of circ_0069094, and miR-136-5p inhibition abolished circ_0069094 knockdown-induced effects in PTX-resistant cells. MiR-136-5p expression was decreased in PTX-resistant breast cancer tissues and cells, and the overexpression of miR-136-5p suppressed the malignant behaviors of breast cancer cells by targeting YWHAZ. Importantly, circ_0069094 regulated YWHAZ expression in breast cancer by targeting miR-136-5p. CONCLUSION Circ_0069094 silencing improved PTX sensitivity in breast cancer progression through competitively sponging miR-136-5p.
Collapse
Affiliation(s)
- Zhihua Kong
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Bisheng Zhu
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Long Wan
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Enrong Feng
- Department of Ultrasound, Xianning Hospital of Traditional Chinese Medicine, Xianning City, China
| |
Collapse
|
7
|
Shojaei S, Menbari P, Jamshidi S, Taherkhani A. MicroRNA-Based Markers of Oral Tongue Squamous Cell Carcinoma and Buccal Squamous Cell Carcinoma: A Systems Biology Approach. Biochem Res Int 2023; 2023:5512894. [PMID: 37143570 PMCID: PMC10151719 DOI: 10.1155/2023/5512894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Objective Oral tongue squamous cell carcinoma (OTSCC) and buccal squamous cell carcinoma (BSCC) are the first and second leading causes of oral cancer, respectively. OTSCC and BSCC are associated with poor prognosis in patients with oral cancer. Thus, we aimed to indicate signaling pathways, Gene Ontology terms, and prognostic markers mediating the malignant transformation of the normal oral tissue to OTSCC and BSCC. Methods The dataset GSE168227 was downloaded and reanalyzed from the GEO database. Orthogonal partial least square (OPLS) analysis identified common differentially expressed miRNAs (DEMs) in OTSCC and BSCC compared to their adjacent normal mucosa. Next, validated targets of DEMs were identified using the TarBase web server. With the use of the STRING database, a protein interaction map (PIM) was created. Using the Cytoscape program, hub genes and clusters within the PIM were shown. Next, gene-set enrichment analysis was carried out using the g:Profiler tool. Using the GEPIA2 web tool, analyses of gene expression and survival analysis were also performed. Results Two DEMs, including has-miR-136 and has-miR-377, were common in OTSCC and BSCC (p value <0.01; |Log2 FC| > 1). A total of 976 targets were indicated for common DEMs. PIM included 96 hubs, and the upregulation of EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC, HSP90AA1, PKM, and HSPA5 was significantly associated with a poor prognosis in the head and neck squamous cell carcinoma (HNSCC), while NTRK2, HNRNPH1, DDX17, and WDR82 overexpression was significantly linked to favorable prognosis in the patients with HNSCC. "Clathrin-mediated endocytosis" was considerably dysregulated in OTSCC and BSCC. Conclusion The present study suggests that has-miR-136 and has-miR-377 are underexpressed in OTSCC and BSCC than in normal oral mucosa. Moreover, EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC, HSP90AA1, PKM, HSPA5, NTRK2, HNRNPH1, DDX17, and WDR82 demonstrated prognostic markers in HNSCC. These findings may benefit the prognosis and management of individuals with OTSCC/BSCC. However, additional experimental verification is required.
Collapse
Affiliation(s)
- Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouya Menbari
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Dimitrakopoulos FI, Kottorou A, Tzezou A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett 2021; 517:55-65. [PMID: 34077785 DOI: 10.1016/j.canlet.2021.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Despite the enormous advances during the last three decades, breast cancer continues to be the most frequent type of cancer as well as one of the most frequent cancer-related causes of death in women. Therapeutic management of patients with hormone receptor-positive breast cancer becomes very often a challenge, since de novo or acquired resistance deprives a significant percentage of the patients from the clinical benefit of the well-tolerated hormone therapy. Several molecular mechanisms are implicated in resistance to endocrine therapy, including changes in hormone receptor signaling, activation of parallel signaling pathways, modifications of cell cycle regulators, activation of different transcription factors as well as changes in stem cells activity. In addition, a growing number of studies supports the pivotal role of epigenetic changes not only in the initiation and progression of breast cancer, but also in resistance to endocrine therapy. These changes refer to DNA methylation, histone post-translational modifications as well as to ncRNAs alterations. In this review, we provide an overview of epigenetic mechanisms underlying the endocrine resistance focusing exclusively on breast cancer patients.
Collapse
Affiliation(s)
- Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Aspasia Tzezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
10
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
11
|
Kang S, Ye Y, Xia G, Liu HB. Coronary artery disease: differential expression of ceRNAs and interaction analyses. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:229. [PMID: 33708856 PMCID: PMC7940956 DOI: 10.21037/atm-20-3487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background Previous studies have demonstrated associations between cardiovascular disease and the expression of various messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). This study aimed to investigate the differential expression of mRNAs, lncRNAs, and miRNAs between tissues from patients with coronary artery disease (CAD) and healthy controls, and to determine the interactions between these molecules in CAD. Methods We investigated the differential expression of competitive endogenous RNAs (ceRNAs) between patients with CAD and healthy controls by collecting data from Gene Expression Omnibus (GEO) microarrays. We also investigated the biological function of these differentially expressed ceRNAs by performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. We then created a protein-protein interaction (PPI) network to identify the hub genes. Biosystems and literature searches were also carried out to identify relevant signaling pathways and the potential function of the differentially expressed ceRNAs. Results We identified 456 expression profiles for miRNAs, 16,325 mRNA expression profiles, and 2,869 lncRNA expression profiles. With regards to connectivity, GO and KEGG analyses (count ≥9) identified the top 11 PPI network nodes in rank order. We also identified the top 15 significant nodes for the ceRNAs identified according to degree centrality (DC) (P<0.05). Collectively, our analyses confirmed that the differential expression of certain ceRNAs, and their respective signaling pathways were associated with CAD. Conclusions Data arising from 11 GO and KEGG pathways, the top 15 PPI network nodes with the best connectivity rank, and the top 15 ceRNA network nodes, as determined by DC rank in CAD population, indicated that the differential expression of these ceRNAs plays a key role in the CAD. Our findings highlight new molecular mechanisms for CAD and provide new options for the development of therapeutic targets.
Collapse
Affiliation(s)
- Sheng Kang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yong Ye
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang Xia
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hai-Bo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
13
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
14
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 2020; 16:2628-2647. [PMID: 32792861 PMCID: PMC7415433 DOI: 10.7150/ijbs.47203] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs (ncRNAs) of about 22 nucleotides in size, play important roles in gene regulation, and their dysregulation is implicated in human diseases including cancer. A variety of miRNAs could take roles in the cancer progression, participate in the process of tumor immune, and function with miRNA sponges. During the last two decades, the connection between miRNAs and various cancers has been widely researched. Based on evidence about miRNA, numerous potential cancer biomarkers for the diagnosis and prognosis have been put forward, providing a new perspective on cancer screening. Besides, there are several miRNA-based therapies among different cancers being conducted, advanced treatments such as the combination of synergistic strategies and the use of complementary miRNAs provide significant clinical benefits to cancer patients potentially. Furthermore, it is demonstrated that many miRNAs are engaged in the resistance of cancer therapies with their complex underlying regulatory mechanisms, whose comprehensive cognition can help clinicians and improve patient prognosis. With the belief that studies about miRNAs in human cancer would have great clinical implications, we attempt to summarize the current situation and potential development prospects in this review.
Collapse
Affiliation(s)
- Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yuqian Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Xie
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
15
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
16
|
Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact 2020; 325:109124. [PMID: 32437694 DOI: 10.1016/j.cbi.2020.109124] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The prenylated flavonoid icaritin (ICT) is currently undergoing phase 3 clinical trial for the treatment of advanced hepatocellular carcinoma (HCC), based on a solid array of preclinical and clinical data. The antitumor activity originates from the capacity of the drug to modulate several signaling effectors in cancer cells, mainly the estrogen receptor splice variant ERα36, the transcription factors STAT3 and NFκB, and the chemokine receptor CXCR4. Recent studies have implicated additional components, including different microRNAs, the generation of reactive oxygen species and the targeting of sphingosine kinase-1. ICT also engages the RAGE-HMGB1 signaling route and modulates the apoptosis/autophagy crosstalk to promote its anticancer activity. In addition, ICT exerts profound changes on the tumor microenvironment to favor an immune-response. Collectively, these multiple biochemical and cellular characteristics confer to ICT a robust activity profile which can be exploited to treat HCC, as well as other cancers, including glioblastoma and onco-hematological diseases such as chronic myeloid leukemia. This review provides an update of the pharmacological properties of ICT and its metabolic characteristics. It also addresses the design of derivatives, including both natural products and synthetic molecules, such as SNG1153 also in clinical trial. The prenylated flavonoid ICT deserves attention as a multifunctional natural product potentially useful to improve the treatment of advanced hepatocellular carcinoma.
Collapse
|