1
|
Ríos S, González LG, Saez CG, Smith PC, Escobar LM, Martínez CE. L-PRF Secretome from Both Smokers/Nonsmokers Stimulates Angiogenesis and Osteoblast Differentiation In Vitro. Biomedicines 2024; 12:874. [PMID: 38672228 PMCID: PMC11048676 DOI: 10.3390/biomedicines12040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Leukocyte and Platelet-Rich Fibrin (L-PRF) is part of the second generation of platelet-concentrates. L-PRF derived from nonsmokers has been used in surgical procedures, with its beneficial effects in wound healing being proven to stimulate biological activities such as cell proliferation, angiogenesis, and differentiation. Cigarette smoking exerts detrimental effects on tissue healing and is associated with post-surgical complications; however, evidence about the biological effects of L-PRF derived from smokers is limited. This study evaluated the impact of L-PRF secretome (LPRFS) derived from smokers and nonsmokers on angiogenesis and osteoblast differentiation. LPRFS was obtained by submerging L-PRF membranes derived from smokers or nonsmokers in culture media and was used to treat endothelial cells (HUVEC) or SaOs-2 cells. Angiogenesis was evaluated by tubule formation assay, while osteoblast differentiation was observed by alkaline phosphatase and osterix protein levels, as well as in vitro mineralization. LPRFS treatments increased angiogenesis, alkaline phosphatase, and osterix levels. Treatment with 50% of LPRFS derived from smokers and nonsmokers in the presence of osteogenic factors stimulates in vitro mineralization significantly. Nevertheless, differences between LPRFS derived from smokers and nonsmokers were not found. Both LPRFS stimulated angiogenesis and osteoblast differentiation in vitro; however, clinical studies are required to determine the beneficial effect of LPRFS in smokers.
Collapse
Affiliation(s)
- Susana Ríos
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
| | - Lina Gabriela González
- Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia (L.M.E.)
| | - Claudia Gilda Saez
- School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile;
| | - Patricio Cristian Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
| | - Lina M. Escobar
- Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia (L.M.E.)
| | - Constanza Eugenia Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
- Faculty of Dentistry, Universidad de los Andes, Santiago 7620086, Chile
| |
Collapse
|
2
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Jiang X, Tang F, Zhang J, He M, Xie T, Tang H, Liu J, Luo K, Lu S, Liu Y, Lu J, He M, Wei Q. High GNG4 predicts adverse prognosis for osteosarcoma: Bioinformatics prediction and experimental verification. Front Oncol 2023; 13:991483. [PMID: 36845726 PMCID: PMC9950737 DOI: 10.3389/fonc.2023.991483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Background Guanine nucleotide binding (G) protein subunit γ 4 (GNG4) is closely related to the malignant progression and poor prognosis of various tumours. However, its role and mechanism in osteosarcoma remain unclear. This study aimed to elucidate the biological role and prognostic value of GNG4 in osteosarcoma. Methods Osteosarcoma samples in the GSE12865, GSE14359, GSE162454 and TARGET datasets were selected as the test cohorts. The expression level of GNG4 between normal and osteosarcoma was identified in GSE12865 and GSE14359. Based on the osteosarcoma single-cell RNA sequencing (scRNA-seq) dataset GSE162454, differential expression of GNG4 among cell subsets was identified at the single-cell level. As the external validation cohort, 58 osteosarcoma specimens from the First Affiliated Hospital of Guangxi Medical University were collected. Patients with osteosarcoma were divided into high- and low-GNG4 groups. The biological function of GNG4 was annotated using Gene Ontology, gene set enrichment analysis, gene expression correlation analysis and immune infiltration analysis. Kaplan-Meier survival analysis was conducted and receiver operating characteristic (ROC) curves were calculated to determine the reliability of GNG4 in predicting prognostic significance and diagnostic value. Functional in vitro experiments were performed to explore the function of GNG4 in osteosarcoma cells. Results GNG4 was generally highly expressed in osteosarcoma. As an independent risk factor, high GNG4 was negatively correlated with both overall survival and event-free survival. Furthermore, GNG4 was a good diagnostic marker for osteosarcoma, with an area under the receiver operating characteristic curve (AUC) of more than 0.9. Functional analysis suggested that GNG4 may promote the occurrence of osteosarcoma by regulating ossification, B-cell activation, the cell cycle and the proportion of memory B cells. In in vitro experiments, silencing of GNG4 inhibited the viability, proliferation and invasion of osteosarcoma cells. Conclusion Through bioinformatics analysis and experimental verification, high expression of GNG4 in osteosarcoma was identified as an oncogene and reliable biomarker for poor prognosis. This study helps to elucidate the significant potential of GNG4 in carcinogenesis and molecular targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Spinal Bone Disease, Yulin Orthopedics Hospital of Chinese and Western Medicine, Yulin, Guangxi, China
| | - Junlei Zhang
- Department of Sports Medicine, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shenglin Lu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jili Lu
- Department of Orthopaedics, the People’s Hospital of Baise, Baise, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Maolin He
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| |
Collapse
|
4
|
Mroczek J, Pikula S, Suski S, Weremiejczyk L, Biesaga M, Strzelecka-Kiliszek A. Apigenin Modulates AnxA6- and TNAP-Mediated Osteoblast Mineralization. Int J Mol Sci 2022; 23:13179. [PMID: 36361965 PMCID: PMC9658728 DOI: 10.3390/ijms232113179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/21/2023] Open
Abstract
Mineralization-competent cells like osteoblasts and chondrocytes release matrix vesicles (MVs) which accumulate Ca2+ and Pi, creating an optimal environment for apatite formation. The mineralization process requires the involvement of proteins, such as annexins (Anx) and tissue-nonspecific alkaline phosphatase (TNAP), as well as low molecular-weight compounds. Apigenin, a flavonoid compound, has been reported to affect bone metabolism, but there are doubts about its mechanism of action under physiological and pathological conditions. In this report, apigenin potency to modulate annexin A6 (AnxA6)- and TNAP-mediated osteoblast mineralization was explored using three cell lines: human fetal osteoblastic hFOB 1.19, human osteosarcoma Saos-2, and human coronary artery smooth muscle cells HCASMC. We compared the mineralization competence, the morphology and composition of minerals, and the protein distribution in control and apigenin-treated cells and vesicles. The mineralization ability was monitored by AR-S/CPC analysis, and TNAP activity was determined by ELISA assay. Apigenin affected the mineral structure and modulated TNAP activity depending on the concentration. We also observed increased mineralization in Saos-2 cells. Based on TEM-EDX, we found that apigenin influenced the mineral composition. This flavonoid also disturbed the intracellular distribution of AnxA6 and TNAP, especially blocking AnxA6 aggregation and TNAP attachment to the membrane, as examined by FM analysis of cells and TEM-gold analysis of vesicles. In summary, apigenin modulates the mineralization process by regulating AnxA6 and TNAP, as well as through various effects on normal and cancer bone tissues or atherosclerotic soft tissue.
Collapse
Affiliation(s)
- Joanna Mroczek
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Szymon Suski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Lilianna Weremiejczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Magdalena Biesaga
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | | |
Collapse
|
5
|
Bozycki L, Mroczek J, Bessueille L, Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A. Annexins A2, A6 and Fetuin-A Affect the Process of Mineralization in Vesicles Derived from Human Osteoblastic hFOB 1.19 and Osteosarcoma Saos-2 Cells. Int J Mol Sci 2021; 22:ijms22083993. [PMID: 33924370 PMCID: PMC8069967 DOI: 10.3390/ijms22083993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.
Collapse
Affiliation(s)
- Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
| | - Joanna Mroczek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
- Department of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - Saida Mebarek
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - René Buchet
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
- Correspondence: ; Tel.: +48-22-5892276; Fax: +48-22-8224352
| |
Collapse
|
6
|
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020; 754:144855. [PMID: 32522695 DOI: 10.1016/j.gene.2020.144855] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Alkaline phosphatase (ALP) is highly expressed in the cells of mineralized tissue and plays a critical function in the formation of hard tissue. The existing status of this critical enzyme should be reviewed periodically. ALP increases inorganic phosphate local rates and facilitates mineralization as well as reduces the extracellular pyrophosphate concentration, an inhibitor of mineral formation. Mineralization is the production, inside matrix vesicles, of hydroxyapatite crystals that bud from the outermembrane of hypertrophic osteoblasts and chondrocytes. The expansion of hydroxyapatite formsinto the extracellular matrix and its accumulation between collagen fibrils is observed. Among various isoforms, the tissue-nonspecific isozyme of ALP (TNAP) is strongly expressed in bone, liver and kidney and plays a key function in the calcification of bones. TNAP hydrolyzes pyrophosphate and supplies inorganic phosphate to enhance mineralization. The biochemical substrates of TNAP are believed to be inorganic pyrophosphate and pyridoxal phosphate. These substrates concentrate in TNAP deficient condition which results in hypophosphatasia. The increased level of ALP expression and development in this environment would undoubtedly provide new and essential information about the fundamental molecular mechanisms of bone formation, offer therapeutic possibilities for the management of bone-related diseases.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|