1
|
Tahir S, Hassan SS, Yang L, Ma M, Li C. Detection Methods for Pine Wilt Disease: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2876. [PMID: 39458823 PMCID: PMC11511408 DOI: 10.3390/plants13202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote sensing. While traditional methods are economical, they are limited by their inability to detect subtle or early changes and require considerable time and expertise. To overcome these challenges, this study emphasizes advanced molecular approaches such as real-time polymerase chain reaction (RT-PCR), droplet digital PCR (ddPCR), and loop-mediated isothermal amplification (LAMP) coupled with CRISPR/Cas12a, which offer fast and accurate pathogen detection. Additionally, DNA barcoding and microarrays facilitate species identification, and proteomics can provide insights into infection-specific protein signatures. The study also highlights remote sensing technologies, including satellite imagery and unmanned aerial vehicle (UAV)-based hyperspectral analysis, for their capability to monitor PWD by detecting asymptomatic diseases through changes in the spectral signatures of trees. Future research should focus on combining traditional and innovative techniques, refining visual inspection processes, developing rapid and portable diagnostic tools for field application, and exploring the potential of volatile organic compound analysis and machine learning algorithms for early disease detection. Integrating diverse methods and adopting innovative technologies are crucial to effectively control this lethal forest disease.
Collapse
Affiliation(s)
- Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Xiang Fang District, Harbin 150040, China;
| | - Lu Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| |
Collapse
|
2
|
Xue D, Yang Y, Fang L, Wang S, Wu Y. Trehalose 6-phosphate synthase gene rdtps1 contributes to thermal acclimation in Rhyzopertha dominica. BMC Genomics 2024; 25:172. [PMID: 38350857 PMCID: PMC10863172 DOI: 10.1186/s12864-024-10028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The lesser grain borer (Rhyzopertha dominica), a worldwide primary pest of stored grain, causes serious economic losses and threatens stored food safety. R. dominica can respond to changes in temperature, especially the adaptability to heat. In this study, transcriptome analysis of R. dominica exposed to different temperatures was performed to elucidate differences in gene expression and the underling molecular mechanism. RESULTS Isoform-sequencing generated 17,721,200 raw reads and yielded 20,416 full-length transcripts. A total of 18,880 (92.48%) transcripts were annotated. We extracted RNA from R. dominica reared at 5 °C (cold stress), 15 °C (cold stress), 27 °C (ambient temperature) and 40 °C (heat stress) for RNA-seq. Compared to those of control insects reared at 27 °C, 119, 342, and 875 differentially expressed genes (DEGs) were identified at 5 °C, 15 °C, and 40 °C, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that pathways associated with "fatty acid metabolism", "fatty acid biosynthesis", "AMPK signaling pathway", "neuroactive ligand receptor interaction", and "longevity regulating pathway-multiple species" were significantly enriched. The functional annotation revealed that the genes encoding heat shock proteins (HSPs), fatty acid synthase (FAS), phospholipases (PLA), trehalose transporter (TPST), trehalose 6-phosphate synthase (TPS), and vitellogenin (Vg) were most likely involved in temperature regulation, which was also validated by RT-qPCR. Seven candidate genes (rdhsp1, rdfas1, rdpla1, rdtpst1, rdtps1, rdvg1, and rdP450) were silenced in the RNA interference (RNAi) assay. RNAi of each candidate gene suggested that inhibiting rdtps1 expression significantly decreased the trehalose level and survival rate of R. dominica at 40 °C. CONCLUSIONS These results indicated that trehalose contributes to the high temperature resistance of R. dominica. Our study elucidates the molecular mechanisms underlying heat tolerance and provides a potential target for the pest management in R. dominica.
Collapse
Affiliation(s)
- Dingrong Xue
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
| | - Yan Yang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- Henan Collaborative Innovation Center for Grain Storage Security, School of Food and Strategic Reserves, Henan University of Technology, 450001, Zhengzhou, China
| | - Liwei Fang
- Department of Microbiology and Immunology, University of Illinois Chicago, 60612, Chicago, USA
| | - Shibo Wang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yi Wu
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China.
| |
Collapse
|
3
|
Aixia Y, Xiaolei D, Yuan F, Ruiwen Z, Jianren Y. Genetic diversity and genome-wide association analysis of pine wood nematode populations in different regions of China. FRONTIERS IN PLANT SCIENCE 2023; 14:1183772. [PMID: 37426967 PMCID: PMC10327295 DOI: 10.3389/fpls.2023.1183772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
Introduction Pine wilt disease (Bursaphelenchus xylophilus) was recently detected in Liaoning Province, which was previously considered an unfavourable area for B. xylophilus due to its low temperatures. This study aims to compare the reproductivity and genetic variations of B. xylophilus isolates from Liaoning Province and other parts of China to explore their phenotypic and genomic differences. Methods The samples from Liaoning, Anhui, Hubei, Henan, Zhejiang and Jiangsu were isolated and purified to obtain the strains. The reproductivity of the strains was determined at 15 °C. The genetic structure was analyzed by using SNP molecular markers, and the whole genome association analysis was carried out by integrating SNP information and feculence traits. Results A reproductivity experiment showed that Liaoning isolates have higher reproductive ability at 15 °C. Subsequent SNP profiling and population differentiation analysis revealed obvious genetic differentiation of Liaoning isolates from other isolates. A genome-wide association study showed that SNPs closely related to low-temperature tolerance were mainly located in GPCR, Acyl-CoA, and Cpn10, which are responsible for adaptation to environmental factors, such as temperature change. Discussion Pine wood nematodes likely adapted to the climate in Liaoning and maintained a certain reproductive capacity at low temperature via variants of adaptation-related genes. This study provides a theoretical basis for elucidating the prevalence and diffusion status of B. xylophilus in China.
Collapse
|
4
|
Yuan Y, Pan M, Shen L, Liu Y, Zhu Q, Hong J, Ye J, Tan J. Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi. Microorganisms 2023; 11:microorganisms11020430. [PMID: 36838395 PMCID: PMC9961929 DOI: 10.3390/microorganisms11020430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
To explore the effect of associated bacteria on the low-temperature adaptability of pinewood nematodes (PWNs), transcriptome sequencing (RNA-seq) of PWN AH23 treated with the associated bacterial strain Bacillus cereus GD1 was carried out with reference to the whole PWN genome. Bioinformatic software was utilized to analyze the differentially expressed genes (DEGs). This study was based on the analysis of DEGs to verify the function of daf-11 by RNAi. The results showed that there were 439 DEGs between AH23 treated with GD1 and those treated with ddH2O at 10 °C. There were 207 pathways annotated in the KEGG database and 48 terms annotated in the GO database. It was found that after RNAi of daf-11, the survival rate of PWNs decreased significantly at 10 °C, and fecundity decreased significantly at 15 °C. It can be concluded that the associated bacteria GD1 can enhance the expression of genes related to PWN low-temperature adaptation and improve their adaptability to low temperatures.
Collapse
|
5
|
Lv WX, Cheng P, Lei JJ, Peng H, Zang CH, Lou ZW, Liu HM, Guo XX, Wang HY, Wang HF, Zhang CX, Liu LJ, Gong MQ. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasit Vectors 2023; 16:12. [PMID: 36635706 PMCID: PMC9837946 DOI: 10.1186/s13071-022-05643-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.
Collapse
Affiliation(s)
- Wen-Xiang Lv
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Peng Cheng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Jing-Jing Lei
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hui Peng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chuan-Hui Zang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Zi-Wei Lou
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hong-Mei Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Xiu-Xia Guo
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Yang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Fang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chong-Xing Zhang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Li-Juan Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Mao-Qing Gong
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| |
Collapse
|
6
|
Liu Q, Luo D, Wang M, Song X, Ye X, Jashenko R, Ji R. Transcriptome analysis of the response to low temperature acclimation in Calliptamus italicus eggs. BMC Genomics 2022; 23:482. [PMID: 35778687 PMCID: PMC9248191 DOI: 10.1186/s12864-022-08705-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Calliptamus italicus is a dominant species in the desert and semi-desert grassland. It is widely distributed throughout many regions such as Asia, Europe, North Africa and the Mediterranean, and has enormous destructive potential for agriculture and animal husbandry. The C. italicus overwintering as eggs in the soil through diapause, and the cold tolerance of locust eggs is the key to their ability to survive the winter smoothly to maintain the population. Results Transcriptome analysis of C. italicus eggs was carried out in this paper in constant low temperature acclimation, natural low temperature acclimation and room temperature. The differentially expressed genes related to cold tolerance were screened out, the differences in expression patterns under different low temperature acclimation were analyzed, and the genes in the significantly up-regulated pathways may play an important role in cold tolerance. The results show that different domestication modes can induce C. italicus eggs to express a large number of genes to alleviate low temperature damage, but C. italicus eggs are more sensitive to changes in temperature. Compared with the control, there are 8689 DEGs at constant low temperature and 14,994 DEGs at natural low temperature. KEGG analysis showed that DEGs were mainly enriched in pathways related to metabolism and biological systems under constant low temperature, and were mainly enriched in pathways related to biological systems and environmental information processing under natural low temperature. In addition, RNAi technology was used to further verify the regulation of genes in the significantly enriched up-regulated pathways on C. italicus eggs, and it was confirmed that the hatching rate of C. italicus eggs at low temperature was significantly reduced after interference. Conclusions Transcriptome analysis of C. italicus eggs treated at different temperatures provided a theoretical basis for further understanding the adaptation mechanism of C. italicus eggs to low temperature. In addition, four potential RNAi target genes were verified in the eggs of C. italicus for the first time, providing new ideas for effective control of this species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08705-3.
Collapse
Affiliation(s)
- Qian Liu
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China
| | - Di Luo
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China
| | - Mengjia Wang
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China
| | - Xingmin Song
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaofang Ye
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China
| | - Roman Jashenko
- Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050038
| | - Rong Ji
- International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
7
|
Chen J, Hao X, Wang B, Ma L. Transcriptomics and coexpression network profiling of the effects of levamisole hydrochloride on Bursaphelenchus xylophilus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105019. [PMID: 35082042 DOI: 10.1016/j.pestbp.2021.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Bursaphelenchus xylophilus is one of the most dangerous forest pathogens in the world, causing devastating pine forest deaths with considerable economic losses. In this study, we investigated the B. xylophilus RNA sequence responses of two different concentrations of levamisole hydrochloride (LH). We observed that body-wall muscle twitching, paralysis and, ultimately, death. 2.5 mg/ml and 3.5 mg/ml LH have toxicological effects on B. xylophilus, with mortality increasing significantly with concentration (p < 0.05). RNA sequencing, differential gene expression analysis, and cluster analysis were performed, and 336, 384, 6 genes with significant variance in expression were identified. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 12 intersecting genes revealed that these genes are mostly involved in metabolism of xenobiotics and have essential roles in drug sensitivity. Through the trend analysis of DEGs, it was divided into 8 modules, and the significant modules were selected to construct the co-expression network as the central genes of the drug metabolism-cytochrome P450 pathway (ko00982) and metabolism of xenobiotics by cytochrome P450 (ko00980). Eight highly related genes were identified, including cuticle collagen, cystathionine beta-synthase, endochitinase, pyruvate dehydrogenase E1 component subunit beta, aldehyde dehydrogenase, lipase, and zinc metalloproteinase. The expression levels of these genes were upregulated significantly at low concentrations and were significantly related to the resistance of B. xylophilus to LH. This study shows that B. xylophilus gene family expansions occurred in xenobiotic detoxification pathways through gene expression and potential horizontal correlated gene transfer with LH and helps to elucidate LH lethality and the evolutionary mechanisms underlying the adaptations of B. xylophilus to the environment. These results contributing to our understanding of B. xylophilus under LH and provide a data platform to providing a basis for its control.
Collapse
Affiliation(s)
- Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Buyong Wang
- School of Agriculture and Bioengineering, Heze University, Heze 274015, China.
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Xie YF, Wang XD, Zhong WH, Zhu DH, He Z. Transcriptome Profile Changes Associated With Heat Shock Reaction in the Entomopathogenic Nematode, Steinernema carpocapsae. Front Physiol 2020; 11:721. [PMID: 32754045 PMCID: PMC7365922 DOI: 10.3389/fphys.2020.00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
The entomopathogenic nematode Steinernema carpocapsae has been used for control of soil insects. However, S. carpocapse is sensitive to environmental factors, particularly temperature. We studied an S. carpocapse group that was shocked with high temperature. We also studied the transcriptome-level responses associated with temperature stress using a BGIseq sequencing platform. We de novo assembled the reads from the treatment and control groups into one transcriptome consisting of 43.9 and 42.9 million clean reads, respectively. Based on the genome database, we aligned the clean reads to the Nr, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases and analyzed the differentially expressed genes (DEGs). Compared with the control, the heat-shocked group had significant differential expression of the heat shock protein (HSP) family, antioxidase [glutathione S-transferases (GSTs) and superoxide dismutase (SOD)], monooxygenase (P450), and transcription factor genes (DAF-16 and DAF-2). These DEGs were demonstrated to be part of the Longevity pathway and insulin/insulin-like signaling pathway. The results revealed the potential mechanisms, at the transcriptional level, of S. carpocapsae under thermal stress.
Collapse
Affiliation(s)
- Yi-Fei Xie
- Hunan Academy of Forestry, Changsha, China.,College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Xiu-Dan Wang
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | | | - Dao-Hong Zhu
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Zhen He
- Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
9
|
Wang B, Hao X, Xu J, Wang B, Ma W, Liu X, Ma L. Cytochrome P450 metabolism mediates low-temperature resistance in pinewood nematode. FEBS Open Bio 2020; 10:1171-1179. [PMID: 32348629 PMCID: PMC7262887 DOI: 10.1002/2211-5463.12871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 01/23/2023] Open
Abstract
Pinewood nematode (PWN; Bursaphelenchus xylophilus) is a devastating invasive species that is expanding into colder regions. Here, we investigated the molecular mechanisms underlying low-temperature resistance of PWN. We identified differentially expressed genes enriched under low temperature in previously published transcriptome data using the Kyoto Encyclopedia of Genes and Genomes. Quantitative real-time PCR was used to further validate the transcript level changes of three known cytochrome P450 genes under low temperature. RNA interference was used to validate the low-temperature resistance function of three cytochrome P450 genes from PWN. We report that differentially expressed genes were significantly enriched in two cytochrome P450-related pathways under low-temperature treatment. Heatmap visualization of transcript levels of cytochrome P450-related genes revealed widely different transcript patterns between PWNs treated under low and regular temperatures. Transcript levels of three cytochrome P450 genes from PWNs were elevated at low temperature, and knockdown of these genes decreased the survival rates of PWNs under low temperature. In summary, these findings suggest that cytochrome P450 metabolism plays a critical role in the low-temperature resistance mechanism of PWN.
Collapse
Affiliation(s)
- Bowen Wang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xin Hao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jiayao Xu
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Buyong Wang
- College of Agricultural and Biological Engineering, Heze University, Heze, China
| | - Wei Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuefeng Liu
- College of Forestry, Northeast Forestry University, Harbin, China.,Heilongjiang Forest Protection Technology Innovation Center, Northeast Forestry University, Harbin, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin, China.,Heilongjiang Forest Protection Technology Innovation Center, Northeast Forestry University, Harbin, China
| |
Collapse
|