1
|
Huang Y, Liu J, Cheng L, Xu D, Liu S, Hu H, Ling Y, Yang R, Zhang Y. Genome-Wide Analysis of the Histone Modification Gene ( HM) Family and Expression Investigation during Anther Development in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2496. [PMID: 39273980 PMCID: PMC11396841 DOI: 10.3390/plants13172496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers' development and male sterility.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Wang B, Liang N, Shen X, Xie Z, Zhang L, Tian B, Yuan Y, Guo J, Zhang X, Wei F, Wei X. Cytological and transcriptomic analyses provide insights into the pollen fertility of synthetic allodiploid Brassica juncea hybrids. PLANT CELL REPORTS 2023; 43:23. [PMID: 38150101 DOI: 10.1007/s00299-023-03089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Imbalanced chromosomes and cell cycle arrest, along with down-regulated genes in DNA damage repair and sperm cell differentiation, caused pollen abortion in synthetic allodiploid Brassica juncea hybrids. Interspecific hybridization is considered to be a major pathway for species formation and evolution in angiosperms, but the occurrence of pollen abortion in the hybrids is common, prompting us to recheck male gamete development in allodiploid hybrids after the initial combination of different genomes. Here, we investigated the several key meiotic and mitotic events during pollen development using the newly synthesised allodiploid B. juncea hybrids (AB, 2n = 2× = 18) as a model system. Our results demonstrated the partial synapsis and pairing of non-homologous chromosomes concurrent with chaotic spindle assembly, affected chromosome assortment and distribution during meiosis, which finally caused difference in genetic constitution amongst the final tetrads. The mitotic cell cycle arrest during microspore development resulted in the production of anucleate pollen cells. Transcription analysis showed that sets of key genes regulating cyclin (CYCA1;2 and CYCA2;3), DNA damage repair (DMC1, NBS1 and MMD1), and ubiquitin-proteasome pathway (SINAT4 and UBC) were largely downregulated at the early pollen meiosis stages, and those genes involved in sperm cell differentiation (DUO1, PIRL1, PIRL9 and LBD27) and pollen wall synthesis (PME48, VGDH11 and COBL10) were mostly repressed at the late pollen mitosis stages in the synthetic allodiploid B. juncea hybrids (AB). In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophyte development at the cytological and transcriptomic levels in the synthetic allodiploid B. juncea hybrids.
Collapse
Affiliation(s)
- Boyang Wang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Niannian Liang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Xiaohan Shen
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Jialin Guo
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Somers J, Nelms B. The sporophyte-to-gametophyte transition: The haploid generation comes of age. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102416. [PMID: 37441836 DOI: 10.1016/j.pbi.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Flowering plants alternate between two multicellular generations: the diploid sporophyte and haploid gametophyte. Despite its small size, the gametophyte has significant impacts on plant genetics, evolution, and breeding. Each male pollen grain and female embryo sac is a multicellular organism with independent gene expression, a functioning metabolism, and specialized cell types. In this review, we describe recent progress in understanding the process in which the haploid genome takes over expression from its diploid parent - the sporophyte-to-gametophyte transition. The focus is on pollen, but similar concepts may also apply to the female gametophyte. Technological advances in single-cell genomics offer the opportunity to characterize haploid gene expression in unprecedented detail, positioning the field to make rapid progress.
Collapse
Affiliation(s)
- Julian Somers
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Zhou J, Lei X, Shafiq S, Zhang W, Li Q, Li K, Zhu J, Dong Z, He XJ, Sun Q. DDM1-mediated R-loop resolution and H2A.Z exclusion facilitates heterochromatin formation in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadg2699. [PMID: 37566662 PMCID: PMC10421056 DOI: 10.1126/sciadv.adg2699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Programmed constitutive heterochromatin silencing is essential for eukaryotic genome regulation, yet the initial step of this process is ambiguous. A large proportion of R-loops (RNA:DNA hybrids) had been unexpectedly identified within Arabidopsis pericentromeric heterochromatin with unknown functions. Through a genome-wide R-loop profiling screen, we find that DDM1 (decrease in DNA methylation 1) is the primary restrictor of pericentromeric R-loops via its RNA:DNA helicase activity. Low levels of pericentromeric R-loops resolved by DDM1 cotranscriptionally can facilitate constitutive heterochromatin silencing. Furthermore, we demonstrate that DDM1 physically excludes histone H2A variant H2A.Z and promotes H2A.W deposition for faithful heterochromatin initiation soon after R-loop clearance. The dual functions of DDM1 in R-loop resolution and H2A.Z eviction are essential for sperm nuclei structure maintenance in mature pollen. Our work unravels the cotranscriptional R-loop resolution coupled with accurate H2A variants deposition is the primary step of constitutive heterochromatin silencing in Arabidopsis, which might be conserved across eukaryotes.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Sarfraz Shafiq
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jiafu Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xin-jian He
- National Institute of Biological Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
5
|
Ortiz-Vasquez Q, León-Martínez G, Barragán-Rosillo C, González-Orozco E, Deans S, Aldridge B, Vickers M, Feng X, Vielle-Calzada JP. Genomic methylation patterns in pre-meiotic gynoecia of wild-type and RdDM mutants of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1123211. [PMID: 36993852 PMCID: PMC10040562 DOI: 10.3389/fpls.2023.1123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. METHODS We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). RESULTS By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the RdDM pathway in premeiotic gyneocia. DISCUSSION Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.
Collapse
Affiliation(s)
- Quetzely Ortiz-Vasquez
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Gloria León-Martínez
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Carlos Barragán-Rosillo
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Eduardo González-Orozco
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Samuel Deans
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Billy Aldridge
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Soorni A, Karimi M, Al Sharif B, Habibi K. Genome-wide screening and characterization of long noncoding RNAs involved in flowering/bolting of Lactuca sativa. BMC PLANT BIOLOGY 2023; 23:3. [PMID: 36588159 PMCID: PMC9806901 DOI: 10.1186/s12870-022-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is considered the most important vegetable in the leafy vegetable group. However, bolting affects quality, gives it a bitter taste, and as a result makes it inedible. Bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although bolting/flowering responsive genes have been identified in most sensitive and non-sensitive species, non-coding RNA molecules like long non-coding RNAs (lncRNAs) have not been investigated in lettuce. Hence, in this study, potential long non-coding RNAs that regulate flowering /bolting were investigated in two lettuce strains S24 (resistant strain) and S39 (susceptible strain) in different flowering times to better understand the regulation of lettuce bolting mechanism. For this purpose, we used two RNA-seq datasets to discover the lncRNA transcriptome profile during the transition from vegetative to reproductive phase. RESULTS For identifying unannotated transcripts in these datasets, a 7-step pipeline was employed to filter out these transcripts and terminate with 293 novel lncRNAs predicted by PLncPRO and CREMA. These transcripts were then utilized to predict cis and trans flowering-associated targets and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Computational predictions of target gene function showed the involvement of putative flowering-related genes and enrichment of the floral regulators FLC, CO, FT, and SOC1 in both datasets. Finally, 17 and 18 lncRNAs were proposed as competing endogenous target mimics (eTMs) for novel and known lncRNA miRNAs, respectively. CONCLUSION Overall, this study provides new insights into lncRNAs that control the flowering time of plants known for bolting, such as lettuce, and opens new windows for further study.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | - Batoul Al Sharif
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Li HJ, Yang WC. Central Cell in Flowering Plants: Specification, Signaling, and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:590307. [PMID: 33193544 PMCID: PMC7609669 DOI: 10.3389/fpls.2020.590307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
During the reproduction of animals and lower plants, one sperm cell usually outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm cells fertilize the two adjacent dimorphic female gametes, the egg and central cell, respectively, to initiate the embryo and endosperm within a seed. The endosperm nourishes the embryo development and is also the major source of nutrition in cereals for humankind. Central cell as one of the key innovations of flowering plants is the biggest cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac differentiates from the meiotic products through successive events of nuclear divisions, cellularization, and cell specification. Nowadays, accumulating lines of evidence are raveling multiple roles of the central cell rather than only the endosperm precursor. In this review, we summarize the current understanding on its cell fate specification, intercellular communication, and evolution. We also highlight some key unsolved questions for the further studies in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
11
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
12
|
Bozhkov AI, Kovalova MK, Azeez ZA, Goltvjansky АV. The effect of pre-sowing seed treatment on seedlings growth rate and their excretory activity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The importance of studying pre-sowing seed treatment lies in the possibility of regulating the rate of seed germination, the intensity of their growth and obtaining root exudates in biotechnology. The effect of three pre-sowing treatment methods was examined (control – washing with running water; the first method – washing with 0.05% sodium permanganate solution; the second method – 30 seconds in 70% ethyl alcohol (C2H5OH) and 30 minutes in 5% sodium hypochlorite (NaOCl); the third method – 5 minutes in 70% C2H5OH and 40 minutes in 5% NaOCl) on the growth rate, germination rate, excretion rate of seeds of wheat and peas and composition (of protein, carbohydrate, amino acid content) of root exudates from the first to the third day of growth in order to obtain root exudates. It was revealed that the same pre-sowing treatment of wheat and pea seeds has a different effect on the rate and variability of seedling growth from the first to the third day, as well as on the qualitative and quantitative composition of root exudates. It was shown that pre-sowing treatment of wheat and pea seeds for 5 minutes with 70% ethanol followed by treatment with sodium hypochlorite (a “hard” treatment method) accelerates seedling growth and seed germination. This method of treatment reduces the intensity of excretion of root exudates and composition in wheat, but it increases the intensity of excretion in peas. The discovered effects can be explained by hormesis. Additionally, the third method of pre-sowing seed treatment can be used in root technologies for obtaining root exudates.
Collapse
|