1
|
Li Y, Hu J, Lin H, Qiu D, Qu Y, Du J, Hou L, Ma L, Wu Q, Liu Z, Zhou Y, Li H. Mapping QTLs for adult-plant resistance to powdery mildew and stripe rust using a recombinant inbred line population derived from cross Qingxinmai × 041133. FRONTIERS IN PLANT SCIENCE 2024; 15:1397274. [PMID: 38779062 PMCID: PMC11109386 DOI: 10.3389/fpls.2024.1397274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.
Collapse
Affiliation(s)
- Yahui Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huailong Lin
- Jiushenghe Seed Industry Co. Ltd., Changji, China
| | - Dan Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Hou
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Xining, China
| | - Lin Ma
- Datong Hui and Tu Autonomous County Agricultural Technology Extension Center, Xining, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
2
|
Wen T, Zhang X, Zhu J, Zhang S, Rhaman MS, Zeng W. A SLAF-based high-density genetic map construction and genetic architecture of thermotolerant traits in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1338086. [PMID: 38384753 PMCID: PMC10880447 DOI: 10.3389/fpls.2024.1338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
The leaf scorching trait at flowering is a crucial thermosensitive phenotype in maize under high temperature stress (HS), yet the genetic basis of this trait remains poorly understood. In this study, we genotyped a 254 RIL-F2:8 population, derived from the leaf scorch-free parental inbred line Abe2 and the leaf scorching maternal inbred line B73, using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 10,112 polymorphic SLAF markers were developed, and a high-density genetic map with a total length of 1,475.88 cM was constructed. The average sequencing depth of the parents was 55.23X, and that of the progeny was 12.53X. Then, we identified a total of 16 QTLs associated with thermotolerant traits at flowering, of which four QTLs of leaf scorching damage (LS) were distributed on chromosomes 1 (qLS1), 2 (qLS2.1, qLS2.2) and 3 (qLS3), which could explain 19.73% of phenotypic variation. Combining one qLS1 locus with QTL-seq results led to the identification of 6 candidate genes. Expression experiments and sequence variation indicated that Zm00001d033328, encoding N-acetyl-gamma-glutamyl-phosphate reductase, was the most likely candidate gene controlling thermotolerant traits at flowering. In summary, the high-density genetic map and genetic basis of thermotolerant traits lay a critical foundation for mapping other complex traits and identifying the genes associated with thermotolerant traits in maize.
Collapse
Affiliation(s)
- Tingting Wen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
- Seed Administration Station of Shandong Province, Jinan, China
| | - Xuefei Zhang
- Taian Daiyue District Bureau of Agriculture and Rural Affairs, Taian, China
| | - Jiaojiao Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Susu Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Wei Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| |
Collapse
|
3
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
4
|
Wan H, Yang M, Li J, Wang Q, Liu Z, Zheng J, Li S, Yang N, Yang W. Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:40. [PMID: 37312750 PMCID: PMC10248656 DOI: 10.1007/s11032-023-01386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 06/15/2023]
Abstract
Rye (Secale cereale L.) is an important genetic resource for improving the disease resistance of wheat. An increasing number of rye chromosome segments have been transferred into modern wheat cultivars via chromatin insertions. In this study, 185 recombinant inbred lines (RILs) derived from a cross between a wheat accession containing rye chromosomes 1RS and 3R and a wheat-breeding founder parent Chuanmai 42 from southwestern China were used to decipher the cytological and genetic effects of 1RS and 3R via fluorescence/genomic in situ hybridization and quantitative trait locus (QTL) analyses. Chromosome centromere breakage and fusion were detected in the RIL population. Additionally, the recombination of chromosomes 1BS and 3D from Chuanmai 42 was completely suppressed by 1RS and 3R in the RIL population. In contrast to chromosome 3D of Chuanmai 42, rye chromosome 3R was significantly associated with white seed coats and decreased yield-related traits, as revealed by QTL and single marker analyses, whereas it had no effect on stripe rust resistance. Rye chromosome 1RS did not affect yield-related traits and it increased the susceptibility of plants to stripe rust. Most of the detected QTLs that positively affected yield-related traits were from Chuanmai 42. The findings of this study suggest that the negative effects of rye-wheat substitutions or translocations, including the suppression of the pyramiding of favorable QTLs on paired wheat chromosomes from different parents and the transfer of disadvantageous alleles to filial generations, should be considered when selecting alien germplasm to enhance wheat-breeding founder parents or to breed new varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01386-0.
Collapse
Affiliation(s)
- Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| |
Collapse
|
5
|
Wan H, Yang F, Li J, Wang Q, Liu Z, Tang Y, Yang W. Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes (Basel) 2023; 14:283. [PMID: 36833210 PMCID: PMC9956247 DOI: 10.3390/genes14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) is a useful genetic resource that can be used to improve the performance of common wheat by transferring favorable genes from a wide range of tetraploid or diploid donors. From the perspectives of physiology, cultivation, and molecular genetics, the use of SHW has the potential to increase wheat yield. Moreover, genomic variation and recombination were enhanced in newly formed SHW, which could generate more genovariation or new gene combinations compared to ancestral genomes. Accordingly, we presented a breeding strategy for the application of SHW-the 'large population with limited backcrossing method'-and we pyramided stripe rust resistance and big-spike-related QTLs/genes from SHW into new high-yield cultivars, which represents an important genetic basis of big-spike wheat in southwestern China. For further breeding applications of SHW-derived cultivars, we used the 'recombinant inbred line-based breeding method' that combines both phenotypic and genotypic evaluations to pyramid multi-spike and pre-harvest sprouting resistance QTLs/genes from other germplasms to SHW-derived cultivars; consequently, we created record-breaking high-yield wheat in southwestern China. To meet upcoming environmental challenges and continuous global demand for wheat production, SHW with broad genetic resources from wild donor species will play a major role in wheat breeding.
Collapse
Affiliation(s)
- Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Fan Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yonglu Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
6
|
Yi YJ, Yin YN, Yang YA, Liang YQ, Shan YT, Zhang CF, Zhang YR, Liang ZP. Antagonistic Activity and Mechanism of Bacillus subtilis XZ16-1 Suppression of Wheat Powdery Mildew and Growth Promotion of Wheat. PHYTOPATHOLOGY 2022; 112:2476-2485. [PMID: 35819334 DOI: 10.1094/phyto-04-22-0118-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most serious wheat diseases in the world. Biological control is considered an environmentally safe approach to control plant diseases. Here, to develop effective biocontrol agents for controlling wheat powdery mildew, antagonistic strain XZ16-1 was isolated and identified as Bacillus subtilis based on the morphological, biochemical, and physiological characteristics and 16S rDNA sequence. The culture filtrate of B. subtilis XZ16-1 and its extracts had a significant inhibitory effect on the spore germination of Bgt. Moreover, the therapeutic and prevention efficacy of the 100% culture filtrate on wheat powdery mildew reached 81.18 and 83.72%, respectively, which was better than that of chemical fungicide triadimefon. Further antimicrobial mechanism analysis showed that the XZ16-1 culture filtrate could inhibit the development of powdery mildew spores by disrupting the cell membrane integrity, causing reductions in the mitochondrial membrane potential, and inducing the accumulation of reactive oxygen species in the spores. Biochemical detection indicated that XZ16-1 could solubilize phosphate, fix nitrogen, and produce hydrolases, lipopeptides, siderophores, and indole-3-acetic acid. Defense-related enzymes activated in wheat seedlings treated with the culture filtrate indicated that disease resistance was induced in wheat to resist pathogens. Furthermore, a 106 CFU/ml suspension of XZ16-1 increased the height, root length, fresh weight, and dry weight of wheat seedlings by 77.13, 63.46, 76.73, and 19.16%, respectively, and showed good growth-promotion properties. This study investigates the antagonistic activity and reveals the action mechanism of XZ16-1, which can provide an effective microbial agent for controlling wheat powdery mildew.
Collapse
Affiliation(s)
- Yan-Jie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ya-Nan Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying-Ao Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Qian Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - You-Tian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chang-Fu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Rong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen-Pu Liang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Chen C, Hao W, Wu J, Si H, Xia X, Ma C. Fine Mapping of Stripe-Rust-Resistance Gene YrJ22 in Common Wheat by BSR-Seq and MutMap-Based Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:3244. [PMID: 36501284 PMCID: PMC9740260 DOI: 10.3390/plants11233244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Identification and accurate mapping of new resistance genes are essential for gene pyramiding in wheat breeding. The YrJ22 gene is a dominant stripe-rust-resistance gene located at the distal end of chromosome 2AL, which was identified in a leading Chinese-wheat variety, Jimai 22, showing high resistance to CYR32, a prevalent race of Puccinia striiformis tritici (Pst) in China. In the current study, 15 F1 and 2273 F2 plants derived from the cross of Jimai 22/Avocet S were used for the fine-mapping of YrJ22. The RNA-Seq of resistant and susceptible bulks of F2 plants (designated BSR-Seq) identified 10 single-nucleotide polymorphisms (SNP) in a 12.09 Mb physical interval on chromosome 2AL. A total of 1022 EMS-induced M3 lines of Jimai 22 were screened, to identify susceptible mutants for MutMap analysis. Four CAPS markers were developed from SNPs identified using BSR-Seq and MutMap. A linkage map for YrJ22 was constructed with 11 CAPS/STS and three SSR markers. YrJ22 was located at a 0.9 cM genetic interval flanked by markers H736 and H400, corresponding to a 340.46 kb physical region (768.7-769.0 Mb), including 13 high-confidence genes based on the Chinese Spring reference genome. TraesCS2A01G573200 is a potential candidate-gene, according to linkage and quantitative real-time PCR (qPCR) analyses. The CAPS marker H732 designed from an SNP in TraesCS2A01G573200 co-segregated with YrJ22. These results provide a useful stripe-rust-resistance gene and molecular markers for marker-assisted selection in wheat breeding and for further cloning of the gene.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Weihao Hao
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Jingchun Wu
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Hongqi Si
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Chuanxi Ma
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Anhui Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Wu J, Xu D, Fu L, Wu L, Hao W, Li J, Dong Y, Wang F, Wu Y, He Z, Si H, Ma C, Xia X. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3485-3496. [PMID: 35986759 DOI: 10.1007/s00122-022-04195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A stripe rust resistance gene YrZM175 in Chinese wheat cultivar Zhongmai 175 was mapped to a genomic interval of 636.4 kb on chromosome arm 2AL, and a candidate gene was predicted. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is a worldwide wheat disease that causes large losses in production. Fine mapping and cloning of resistance genes are important for accurate marker-assisted breeding. Here, we report the fine mapping and candidate gene analysis of stripe rust resistance gene YrZM175 in a Chinese wheat cultivar Zhongmai 175. Fifteen F1, 7,325 F2 plants and 117 F2:3 lines derived from cross Avocet S/Zhongmai 175 were inoculated with PST race CYR32 at the seedling stage in a greenhouse, and F2:3 lines were also evaluated for stripe rust reaction in the field using mixed PST races. Bulked segregant RNA-seq (BSR-seq) analyses revealed 13 SNPs in the region 762.50-768.52 Mb on chromosome arm 2AL. By genome mining, we identified SNPs and InDels between the parents and contrasting bulks and mapped YrZM175 to a 0.72-cM, 636.4-kb interval spanned by YrZM175-InD1 and YrZM175-InD2 (763,452,916-764,089,317 bp) including two putative disease resistance genes based on IWGSC RefSeq v1.0. Collinearity analysis indicated similar target genomic intervals in Chinese Spring, Aegilops tauschii (2D: 647.7-650.5 Mb), Triticum urartu (2A: 750.7-752.3 Mb), Triticum dicoccoides (2A: 771.0-774.5 Mb), Triticum turgidum (2B: 784.7-788.2 Mb), and Triticum aestivum cv. Aikang 58 (2A: 776.3-778.9 Mb) and Jagger (2A: 789.3-791.7 Mb). Through collinearity analysis, sequence alignments of resistant and susceptible parents and gene expression level analysis, we predicted TRITD2Bv1G264480 from Triticum turgidum to be a candidate gene for map-based cloning of YrZM175. A gene-specific marker for TRITD2Bv1G264480 co-segregated with the resistance gene. Molecular marker analysis and stripe rust response data revealed that YrZM175 was different from genes Yr1, Yr17, Yr32, and YrJ22 located on chromosome 2A. Fine mapping of YrZM175 lays a solid foundation for functional gene analysis and marker-assisted selection for improved stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Jingchun Wu
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong province, China
| | - Luping Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu province, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu province, Yangzhou, 225009, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610011, Sichuan province, China
| | - Weihao Hao
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong province, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengju Wang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuying Wu
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office c/o, CAAS, Beijing, 100081, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Yang M, Yang Z, Yang W, Yang E. Genetic Diversity Assessment of the International Maize and Wheat Improvement Center and Chinese Wheat Core Germplasms by Non-Denaturing Fluorescence In Situ Hybridization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1403. [PMID: 35684176 PMCID: PMC9183173 DOI: 10.3390/plants11111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Germplasm is the material basis for crop genetic improvement and related basic research. Knowledge of genetic diversity present in wheat is the prerequisite for wheat breeding and improvement. Non-denaturing fluorescence in situ hybridization (ND-FISH) is a powerful tool to distinguish chromosomal polymorphisms and evaluate genetic diversity in wheat. In this study, ND-FISH using Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-(GAA)7 as probes were used to analyze the genetic diversity among 60 International Maize and Wheat Improvement Center (CIMMYT) derived wheat lines, and 93 cultivated wheat and landraces from the Chinese wheat core germplasm. A total of 137 polymorphic FISH patterns were obtained, in which 41, 65, and 31 were from A-, B-, and D-genome chromosomes, respectively, indicating polymorphism of B-genome > A-genome > D-genome. In addition, 22 and 51 specific FISH types were observed in the two germplasm resource lines. Twelve types of rearrangements, including seven new translocations, were detected in all 153 wheat lines. Genetic relationships among 153 wheat lines were clustered into six groups. Our research provides cytological information for rational utilization of wheat germplasm resources.
Collapse
Affiliation(s)
- Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (M.Y.); (W.Y.)
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu 610066, China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (M.Y.); (W.Y.)
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu 610066, China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (M.Y.); (W.Y.)
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu 610066, China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
10
|
Wang Y, Hu Y, Gong F, Jin Y, Xia Y, He Y, Jiang Y, Zhou Q, He J, Feng L, Chen G, Zheng Y, Liu D, Huang L, Wu B. Identification and Mapping of QTL for Stripe Rust Resistance in the Chinese Wheat Cultivar Shumai126. PLANT DISEASE 2022; 106:1278-1285. [PMID: 34818916 DOI: 10.1094/pdis-09-21-1946-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a damaging disease of wheat globally, and breeding resistant cultivars is the best control strategy. The Chinese winter wheat cultivar Shumai126 (SM126) exhibited strong resistance to P. striiformis f. sp. tritici in the field for more than 10 years. The objective of this study was to identify and map quantitative trait loci (QTL) for resistance to stripe rust in a population of 154 recombinant inbred lines (RILs) derived from a cross between cultivars Taichang29 (TC29) and SM126. The RILs were tested in six field environments with a mixture of the Chinese prevalent races (CYR32, CYR33, CYR34, Zhong4, and HY46) of P. striiformis f. sp. tritici and in growth chamber with race CYR34 and genotyped using the Wheat55K single nucleotide polymorphism (SNP) array. Six QTL were mapped on chromosomes 1BL, 2AS, 2AL, 6AS, 6BS, and 7BL, respectively. All QTL were contributed by SM126 except QYr.sicau-2AL. The QYr.sicau-1BL and QYr.sicau-2AS had major effects, explaining 27.00 to 39.91% and 11.89 to 17.11% of phenotypic variances, which may correspond to known resistance genes Yr29 and Yr69, respectively. The QYr.sicau-2AL, QYr.sicau-6AS, and QYr.sicau-6BS with minor effects are likely novel. QYr.sicau-7BL was only detected based on growth chamber seedling data. Additive effects were detected for the combination of QYr.sicau-1BL, QYr.sicau-2AS, and QYr.sicau-2AL. SNP markers linked to QYr.sicau-1BL (AX-111056129 and AX-108839316) and QYr.sicau-2AS (AX-111557864 and AX-110433540) were converted to breeder-friendly Kompetitive allele-specific PCR (KASP) markers that would facilitate the deployment of stripe rust resistance genes in wheat breeding.
Collapse
Affiliation(s)
- Yufan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fangyi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yarong Jin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yingjie Xia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Sun C, Liu Y, Li Q, Wang B, Chen S, Deng J, Ma D, Yang Y. Rapid Identification of a Stripe Rust Resistance Gene YrXK in Chinese Wheat Line Xike01015 Using Specific Locus Amplified Fragment (SLAF) Sequencing. PLANT DISEASE 2022; 106:282-288. [PMID: 34253044 DOI: 10.1094/pdis-12-20-2648-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat stripe rust, an airborne fungal disease caused by Puccinia striiformis Westend. f. sp. tritici, is one of the most devastating diseases of wheat. Chinese wheat cultivar Xike01015 displays high levels of all-stage resistance (ASR) to the current predominant P. striiformis f. sp. tritici race CYR33. In this study, a single dominant gene, designated YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 populations from a cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct a linkage map in the F2 population. Quantitative trait loci (QTL) analysis mapped YrXk to a 12.4-Mb segment on chromosome1 BS, explaining >86.96% of the phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes, TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results showed that TraesCS1B02G172400.1 and TraesCS1B02G168600.1 are upregulated and that TraesCS1B02G170200.1 is slightly downregulated after inoculation with CYR33 in the seedling stage, which indicates that these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.
Collapse
Affiliation(s)
- Cai Sun
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China
- College of Plant Protection, Southwest University, Beibei 400700, P.R. China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064, Hubei, P.R. China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, P.R. China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, P.R. China
| | - Shuhui Chen
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China
| | - Jianxin Deng
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064, Hubei, P.R. China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064, Hubei, P.R. China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Beibei 400700, P.R. China
| |
Collapse
|
12
|
Rollar S, Geyer M, Hartl L, Mohler V, Ordon F, Serfling A. Quantitative Trait Loci Mapping of Adult Plant and Seedling Resistance to Stripe Rust ( Puccinia striiformis Westend.) in a Multiparent Advanced Generation Intercross Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:684671. [PMID: 35003147 PMCID: PMC8733622 DOI: 10.3389/fpls.2021.684671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/19/2021] [Indexed: 05/20/2023]
Abstract
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
Collapse
Affiliation(s)
- Sandra Rollar
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
13
|
Draz IS, Serfling A, Muqaddasi QH, Röder MS. Quantitative trait loci for yellow rust resistance in spring wheat doubled haploid populations developed from the German Federal ex situ genebank genetic resources. THE PLANT GENOME 2021; 14:e20142. [PMID: 34498808 DOI: 10.1002/tpg2.20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Novel resistance sources to the pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust (stripe rust), a widespread devastating foliar disease in wheat (Triticum aestivum L.), are in demand. Here, we tested two doubled haploid (DH) spring wheat populations derived from the genetic resources for resistance to yellow rust in field trials in Germany and Egypt. Additionally, we performed tests for all-stage resistance (seedling resistance). We performed linkage mapping based on 15k Infinium SNP chip genotyping data that resulted in 3,567 and 3,457 polymorphic markers for DH Population 1 (103 genotypes) and DH Population 2 (148 genotypes), respectively. In DH Population 1, we identified a major and consistent quantitative trait locus (QTL) on chromosome 1B that explained up to 28 and 39% of the phenotypic variation in the field and seedling tests, respectively. The favorable allele was contributed by the line 'TRI-5645', a landrace from Iran, and is most probably the yellow rust resistance (Yr) gene Yr10. In DH Population 2, the favorable allele of a major QTL on chromosome 6B was contributed by the line 'TRI-5310', representing the variety 'Eureke' from France. This QTL was mainly effective in the German environments and explained up to 36% of the phenotypic variation. In Egypt, however, only a moderate resistance QTL was identified in the field tests and no resistance QTL was observed in the seedling tests. Our results demonstrate the usefulness of genetic resources to identify novel sources of resistance to yellow rust, including the "Warrior" race PstS10.
Collapse
Affiliation(s)
- Ibrahim S Draz
- Wheat Disease Research Dep., Plant Pathology Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, 12619, Egypt
| | - Albrecht Serfling
- Julius Kühn Institute-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin Baur Straße 27, Quedlinburg, 06484, Germany
| | - Quddoos H Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland OT, Gatersleben, Germany
- Present address: European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, 06466, Stadt Seeland OT, Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland OT, Gatersleben, Germany
| |
Collapse
|
14
|
Zhou X, Zhong X, Roter J, Li X, Yao Q, Yan J, Yang S, Guo Q, Distelfeld A, Sela H, Kang Z. Genome-Wide Mapping of Loci for Adult-Plant Resistance to Stripe Rust in Durum Wheat Svevo Using the 90K SNP Array. PLANT DISEASE 2021; 105:879-888. [PMID: 33141640 DOI: 10.1094/pdis-09-20-1933-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stripe rust is a foliar disease in wheat caused by Puccinia striiformis f. tritici. The best way to protect wheat from this disease is by growing resistant cultivars. Tetraploid wheat can serve as a good source of valuable genetic diversity for various traits. Here, we report the mapping of nine stripe rust resistance quantitative trait loci (QTL) effective against P. striiformis f. tritici in China and Israel. We used recombinant inbred lines (RILs) developed from a cross between the durum wheat cultivar Svevo and Triticum dicoccoides accession Zavitan. By genotyping the RIL population of 137 lines using the wheat 90K single-nucleotide polymorphism array, we mapped an adult-plant resistance locus QYrsv.swust-1BL.1, the most effective QTL, within a 0.75-centimorgan region in T. turgidum subsp. durum 'Svevo' on chromosome arm 1BL, corresponding to the region of 670.7 to 671.5 Mb on the Chinese Spring chromosome arm 1BL. Of the other eight minor-effect stripe rust QTL, seven were from Svevo and mapped on chromosomes 1A, 1B, 2B, 3A, 4A, and 5A, and one was from Zavitan and mapped on chromosome 2A. Several QTL with epistatic effects were identified as well. The markers linked to the resistance QTL can be useful in marker-assisted selection for incorporation of these resistance QTL into both durum and common wheat cultivars.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Xiao Zhong
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Jonatan Roter
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qiang Yao
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Jiahui Yan
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qingyun Guo
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Assaf Distelfeld
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Hanan Sela
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
15
|
Yang F, Liu Q, Wang Q, Yang N, Li J, Wan H, Liu Z, Yang S, Wang Y, Zhang J, Liu H, Fan X, Ma W, Yang W, Zhou Y. Characterization of the Durum Wheat- Aegilops tauschii 4D(4B) Disomic Substitution Line YL-443 With Superior Characteristics of High Yielding and Stripe Rust Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:745290. [PMID: 34659315 PMCID: PMC8514839 DOI: 10.3389/fpls.2021.745290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 05/10/2023]
Abstract
Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F7 progeny. Somatic analysis using multicolor fluorescence in situ hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of Aegilops tauschii AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene Yr28 carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The Yr28-specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Qier Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Honshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Sujie Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jie Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Hang Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Wuyun Yang
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Yonghong Zhou
| |
Collapse
|
16
|
Jia M, Yang L, Zhang W, Rosewarne G, Li J, Yang E, Chen L, Wang W, Liu Y, Tong H, He W, Zhang Y, Zhu Z, Gao C. Genome-wide association analysis of stripe rust resistance in modern Chinese wheat. BMC PLANT BIOLOGY 2020; 20:491. [PMID: 33109074 PMCID: PMC7590722 DOI: 10.1186/s12870-020-02693-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. RESULTS Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015-2016 cropping season, and in Wuhan in Hubei province in the 2013-2014, 2016-2017 and 2018-2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. CONCLUSION The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Mengjie Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108-6050, USA
| | - Garry Rosewarne
- Department of Jobs, Precincts and Regions, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria, 3400, Australia
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico D.F., Mexico
| | - Junhui Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Enian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ling Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Wenxue Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Hanwen Tong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Weijie He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yuqing Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze university, Jingzhou, 434025, China.
| |
Collapse
|
17
|
Carmona M, Sautua F, Pérez-Hérnandez O, Reis EM. Role of Fungicide Applications on the Integrated Management of Wheat Stripe Rust. FRONTIERS IN PLANT SCIENCE 2020; 11:733. [PMID: 32582257 PMCID: PMC7296138 DOI: 10.3389/fpls.2020.00733] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/14/2023]
Abstract
First described in Europe in 1777, stripe rust (SR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss (Pst) is one of the most important and destructive diseases of wheat worldwide. Until 2000, SR was mainly endemic to cooler regions, but since then, new aggressive strains have emerged, spread intercontinentally, and caused severe epidemics in warmer regions across the world. This has put SR as a disease that poses a threat to the world food security. At present, the preferred strategy for control of SR is the access to wheat cultivars with adequate levels of SR resistance. However, wheat breeding programs are not sufficiently advanced to cope with the recently emerged Pst strains. Under this scenario, foliar fungicide applications have become an important component of SR management, but information on the effects of fungicide applications on SR control and wheat cultivar yield response is scarce. This review seeks to provide an overview of the impact and role of fungicides on SR management. With focus on wheat management in the major wheat-growing regions of the world, the review addresses: (a) the efficacy of different fungicide active ingredients, optimal fungicide timing and number of applications in controlling SR, and (b) the impact of fungicide on wheat grain yield response. Inclusion of fungicides in an integrated crop management approach is discussed.
Collapse
Affiliation(s)
- Marcelo Carmona
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Sautua
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oscar Pérez-Hérnandez
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Erlei M. Reis
- Escuela Para Graduados “Alberto Soriano”, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Wang RRC, Li X, Robbins MD, Larson SR, Bushman SB, Jones TA, Thomas A. DNA sequence-based mapping and comparative genomics of the St genome of Pseudoroegneria spicata (Pursh) Á. Löve versus wheat ( Triticum aestivum L.) and barley ( Hordeum vulgare L.). Genome 2020; 63:445-457. [PMID: 32384249 DOI: 10.1139/gen-2019-0152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bluebunch wheatgrass (referred to as BBWG) [Pseudoroegneria spicata (Pursh) Á. Löve] is an important rangeland Triticeae grass used for forage, conservation, and restoration. This diploid has the basic St genome that occurs also in many polyploid Triticeae species, which serve as a gene reservoir for wheat improvement. Until now, the St genome in diploid species of Pseudoroegneria has not been mapped. Using a double-cross mapping populations, we mapped 230 expressed sequence tag derived simple sequence repeat (EST-SSR) and 3468 genotyping-by-sequencing (GBS) markers to 14 linkage groups (LGs), two each for the seven homologous groups of the St genome. The 227 GBS markers of BBWG that matched those in a previous study helped identify the unclassified seven LGs of the St sub-genome among 21 LGs of Thinopyrum intermedium (Host) Barkworth & D.R. Dewey. Comparisons of GBS sequences in BBWG to whole-genome sequences in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) revealed that the St genome shared a homology of 35% and 24%, a synteny of 86% and 84%, and a collinearity of 0.85 and 0.86, with ABD and H, respectively. This first-draft molecular map of the St genome will be useful in breeding cereal and forage crops.
Collapse
Affiliation(s)
- Richard R-C Wang
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Matthew D Robbins
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Steve R Larson
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Shaun B Bushman
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Thomas A Jones
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Aaron Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| |
Collapse
|
19
|
Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21051820. [PMID: 32155784 PMCID: PMC7084258 DOI: 10.3390/ijms21051820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
|
20
|
Liu L, Yuan C, Wang M, See DR, Chen X. Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:596962. [PMID: 33281855 PMCID: PMC7688900 DOI: 10.3389/fpls.2020.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a global concern for wheat production. Spring wheat cultivar PI 197734, of Sweden origin, has shown high-temperature adult-plant resistance (APR) to stripe rust for many years. To map resistance quantitative trait loci (QTL), 178 doubled haploid lines were developed from a cross of PI 197734 with susceptible AvS. The DH lines and parents were tested in fields in 2017 and 2018 under natural infection of Pst and genotyped with genotyping by multiplexed sequencing (GMS). Kompetitive allele specific PCR (KASP) and simple sequence repeat (SSR) markers from specific chromosomal regions were also used to genotype the population to validate and saturate resistance QTL regions. Two major QTL on chromosomes 1AL and 3BL and one minor QTL on 2AL were identified. The two major QTL, QYrPI197734.wgp-1A and QYrPI197734.wgp-3B, were detected in all tested environments explaining up to 20.7 and 46.8% phenotypic variation, respectively. An awnletted gene mapped to the expected distal end of chromosome 5AL indicated the accuracy of linkage mapping. The KASP markers converted from the GMS-SNPs in the 1A and 3B QTL regions were used to genotype 95 US spring wheat cultivars and breeding lines, and they individually showed different percentages of polymorphisms. The haplotypes of the three markers for the 1A QTL and four markers for the 3B QTL identified 37.9 and 21.1% of the wheat cultivar/breeding lines possibly carrying these two QTL, indicating their usefulness in marker-assisted selection (MAS) for incorporating the two major QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Congying Yuan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen, ;
| |
Collapse
|