1
|
Cardoso NC, Sohn JMB, Raymundi AM, Santos MR, Prickaerts J, Gazarini L, Stern CAJ. Time-dependent fear memory generalization triggered by phosphodiesterase 5 inhibition during reconsolidation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111274. [PMID: 39870136 DOI: 10.1016/j.pnpbp.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored. Considering the importance of retrieval-induced reconsolidation in memory maintenance, we aimed to investigate whether PDE5 inhibition during reconsolidation of recent fear memory affects generalization over time in adult male Wistar rats submitted to contextual fear conditioning. The PDE5 inhibition with vardenafil (VAR) 1 mg/kg i.p. during reconsolidation triggered a time-dependent fear generalization without affecting fear memory in the paired context. Fear generalization and impaired pattern separation appear to be interlinked. Likewise, an impairment of object pattern separation was observed in the VAR-treated group at the remote time point. These effects depended on memory retrieval and were restricted to the reconsolidation time window. A chemogenetic inhibition of the anterior cingulate cortex (ACC), a region involved in allocating remote memories and generalization, prevented the effects of VAR. Moreover, VAR infusion into the ACC (6 μg/0.2 μL) after retrieval also promoted fear generalization and impaired OPS in remote time point, suggesting that ACC underlies the behavioral outcomes of the treatment with VAR. In conclusion, our results suggest that inhibiting PDE5 during the reconsolidation of a recent fear memory recruits the activity of the ACC, triggering fear memory generalization and impairing object pattern separation over time.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mateus Reis Santos
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jos Prickaerts
- Peitho Translational, Drug Discovery and Development Consulting, Maastricht, the Netherlands
| | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
2
|
Jeon M, Kim MS, Kong CH, Min HS, Kang WC, Park K, Jung SY, Bae HJ, Park SJ, Lee JY, Kim JW, Ryu JH. 4-Methoxycinnamic acid ameliorates post-traumatic stress disorder-like behavior in mice by antagonizing the CRF type 1 receptor. Life Sci 2025; 361:123271. [PMID: 39603448 DOI: 10.1016/j.lfs.2024.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
AIMS Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric illness caused by traumatic or life-threatening events and manifesting as various symptoms, including intrusive re-experiences of trauma, avoidance behaviors, hyperarousal, and negative changes in perception and mood. MAIN METHODS Current monoamine-based medications commonly exhibit limited efficacy and significant side effects, which hamper their clinical utility. To address this unmet need, we explored 4-methoxycinnamic acid (4-MCA) as a potential novel treatment for PTSD in a single prolonged stress (SPS)-induced animal model. KEY FINDINGS Administration of 4-MCA (3 and 10 mg/kg, p.o.) significantly mitigated anxiety-like behaviors, alleviated depression-like behaviors, and improved cognitive function in an SPS-treated PTSD mouse model. Further, 4-MCA treatment effectively rectified the fear extinction deficits in the fear conditioning test. Molecular analyses revealed that 4-MCA normalized the elevated corticotropin-releasing hormone (CRH) levels as well as the phosphorylation of protein kinase A (PKA) and cAMP response element-binding protein (CREB) in the amygdala, a pivotal region for fear memory formation. Co-administration of 4-MCA and the CRFR1 antagonist antalarmin at subeffective doses facilitated fear memory extinction. SIGNIFICANCE These findings suggest that 4-MCA alleviates SPS-induced PTSD-like behaviors by regulating the CRH-CRFR1-PKA-CREB signaling pathway in the amygdala, and that 4-MCA may be a potential candidate for future PTSD treatment.
Collapse
Affiliation(s)
- Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hoo Sik Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Yeol Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Woon Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Dong J, Wei R, Zong F, Wang Z, Ma S, Zhao W, Lin Y, Zhang A, Lan G, Zhang F, Zhang HT. Phosphodiesterase 7 inhibitor reduces stress-induced behavioral and cytoarchitectural changes in C57BL/6J mice by activating the BDNF/TrkB pathway. Front Pharmacol 2024; 15:1411652. [PMID: 39092219 PMCID: PMC11291325 DOI: 10.3389/fphar.2024.1411652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Background Phosphodiesterase 7 (PDE7) plays a role in neurological function. Increased expression and activity of PDE7 has been detected in several central nervous system diseases. However, the role of PDE7 in regulating stress levels remains unclear. Thus, this study aimed to determine whether and how PDE7 involved in the stress-induced behavioral and neuron morphological changes. Methods The single prolonged stress (SPS) was used to build a stress exposure model in C57BL/6 J mice and detected PDE7 activity in hippocampus, amygdala, prefrontal cortex and striatum. Next, three doses (0.2, 1, and 5 mg/kg) of the PDE7 inhibitor BRL-50481 were intraperitoneally administered for 10 days, then behavioral, biochemical, and morphological tests were conducted. Results PDE7 activity in hippocampus of mice significantly increased at all times after SPS. BRL-50481 significantly attenuated SPS induced anxiety-like behavior and fear response in both context and cue. In addition, BRL-50481 increased the levels of key molecules in the cAMP signaling pathway which were impaired by SPS. Immunofluorescent staining and Sholl analysis demonstrated that BRL-50481 also restored the nucleus/cytoplasm ratio of hippocampal neurons and improved neuronal plasticity. These effects of BRL-50481 were partially blocked by the TrkB inhibitor ANA-12. Conclusion PDE7 inhibitors attenuate stress-induced behavioral changes by protecting the neuron cytoarchitecture and the neuronal plasticity in hippocampus, which is mediated at least partly through the activation of BDNF/TrkB signaling pathway. These results proved that PDE7 is a potential target for treating stress-induced behavioral and physiological abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
4
|
Navarro-Sánchez M, Gil-Miravet I, Montero-Caballero D, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Some key parameters in contextual fear conditioning and extinction in adult rats. Behav Brain Res 2024; 462:114874. [PMID: 38266780 DOI: 10.1016/j.bbr.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Contextual fear conditioning is a behavioral paradigm used to assess hippocampal-dependent memory in experimental animals. Perception of the context depends on activation of a distinct population of neurons in the hippocampus and in hippocampal-related areas that process discrete aspects of context perception. In the absence of any putatively associated cue, the context becomes the salient element that may warn of an upcoming aversive event; and in particular conditions, animals generalize this warning to any new or similar context. In this study we evaluated the effects of the number of sessions, the number of unconditioned stimuli per acquisition session and the distribution of extinction sessions to assess fear acquisition and extinction and determine under which conditions generalization occurred in adult, male rats. We observed that the organization and spacing of sessions were relevant factors in the acquisition and extinction of contextual fear memories. Extinction occurred with significantly greater robustness when sessions were spread over two days. Furthermore, results indicated that exposure to a single 0.3 mA, 0.5 s footshock in two different sessions could produce context-specific fear, while more acquisition sessions or more footshocks within a single session produced a generalization of the fear response to a new context. Notably, when generalization occurred, successive re-exposure to the generalized context produced extinction in a similar way to the paired exposure. Together, the present findings identify clear procedural and behavioral parameters amenable to neural systems analysis of three clinically relevant outcomes of contextual fear conditioning, i.e., memory acquisition, storage and extinction.
Collapse
Affiliation(s)
- Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Daniel Montero-Caballero
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Riaz K, Suneel S, Hamza Bin Abdul Malik M, Kashif T, Ullah I, Waris A, Di Nicola M, Mazza M, Sani G, Martinotti G, De Berardis D. MDMA-Based Psychotherapy in Treatment-Resistant Post-Traumatic Stress Disorder (PTSD): A Brief Narrative Overview of Current Evidence. Diseases 2023; 11:159. [PMID: 37987270 PMCID: PMC10660711 DOI: 10.3390/diseases11040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health disorder that causes significant dysfunction in individuals. Currently, there are many approved pharmacotherapy and psychotherapy treatment options for PTSD, but unfortunately, half of the patients do not respond to traditional therapies. In this article, we review clinical trials and research on 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy in PTSD patients, its pharmacokinetics, and current treatment guidelines for PTSD. Our findings are based on the results of the efficacy of MDMA-assisted psychotherapy from six phase II randomized controlled trials. MDMA-assisted psychotherapy for PTSD has received the "breakthrough therapy" designation from the FDA. MDMA can reduce PTSD symptoms even in treatment-resistant cases by increasing certain neurohormones, i.e., dopamine, serotonin, norepinephrine, and oxytocin. It also modulates activities in the brain regions involved in fear and anxiety. Future research is needed to show whether the advantages outweigh the disadvantages and whether its use can be integrated into available treatment options for PTSD.
Collapse
Affiliation(s)
- Kainat Riaz
- Dow Medical College, Dow University of Health Sciences, Karachi 75700, Pakistan; (K.R.); (S.S.)
| | - Sejal Suneel
- Dow Medical College, Dow University of Health Sciences, Karachi 75700, Pakistan; (K.R.); (S.S.)
| | | | - Tooba Kashif
- Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar 25120, Pakistan; (I.U.); (A.W.)
| | - Abdul Waris
- Kabir Medical College, Gandhara University, Peshawar 25120, Pakistan; (I.U.); (A.W.)
| | - Marco Di Nicola
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.D.N.); (M.M.); (G.S.)
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.D.N.); (M.M.); (G.S.)
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.D.N.); (M.M.); (G.S.)
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging, and Clinical Sciences, University G. D’Annunzio, 66100 Chieti-Pescara, Italy;
| | - Domenico De Berardis
- Department of Psychiatry, Azienda Sanitaria Locale 4, 64100 Teramo, Italy
- School of Nursing, University of L’Aquila, 67100 L’Aquila, Italy
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443100 Samara, Russia
| |
Collapse
|
6
|
Zhang J, Li W, Liao T, Li M, Yao X, Zhang Y, Zhang B, Zhang J, Jiang X, Wang K, Jing L. Diazepam promotes active avoidance extinction associating with increased dorsal CA3 and amygdala activity. Brain Res 2023; 1817:148481. [PMID: 37429455 DOI: 10.1016/j.brainres.2023.148481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Active avoidance (AA) is an adaptive response to potentially harmful situations while maladapted avoidance that does not extinguish is one of the core symptoms of anxiety and post-traumatic stress disorder. However, the neural mechanisms of AA extinction and its relationship to anxiety remain unclear. We examined AA extinction during three extinction training sessions in two-way active avoidance paradigm and tested the effect of anxiolytic on AA extinction. Then we performed a meta-analysis of rodent studies, identified anxiolytic diazepam facilitates AA acquisition, and tested the same treatment in AA extinction. Diazepam-treated rats significantly reduced avoidance in the first two extinction training, compared with the saline-treated rats, and the reduction in avoidance remained in the third drug-free session. Then we explored extinction associated hippocampal and amygdala activity in saline-and diazepam-treated rats using c-Fos immunostaining following the last extinction session. The density of c-Fos positive cells was higher in dorsal CA3 of the diazepam group than in that of saline-treated animals, and was also higher in the central and basolateral amygdala regions of diazepam-treated rats than in that of saline-treated animals. Combined, these results suggest anxiolytics promotes AA extinction associated with dorsal CA3 and amygdala activity changes.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjun Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Taohong Liao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Meijuan Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Yao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Bingyu Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Jiang
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China..
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Liang Jing
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China..
| |
Collapse
|
7
|
Yang S, Zhu G. Phytotherapy of abnormality of fear memory: A narrative review of mechanisms. Fitoterapia 2023; 169:105618. [PMID: 37482307 DOI: 10.1016/j.fitote.2023.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China; Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
8
|
Huang G, Iqbal J, Shen D, Xue YX, Yang M, Jia X. MicroRNA expression profiles of stress susceptibility and resilience in the prelimbic and infralimbic cortex of rats after single prolonged stress. Front Psychiatry 2023; 14:1247714. [PMID: 37692297 PMCID: PMC10488707 DOI: 10.3389/fpsyt.2023.1247714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The experience of traumatic stress can engender lasting memories associated with the trauma, often resulting in post-traumatic stress disorder (PTSD). However, only a minority of individuals develop PTSD symptoms upon exposure. The neurobiological mechanisms underlying the pathology of PTSD are poorly understood. Utilizing a rat model of PTSD, the Single Prolonged Stress (SPS) paradigm, we were able to differentiate between resilient and susceptible individuals. Fourteen days after the SPS exposure, we conducted the behavioral analyses using Elevated Plus Maze (EPM) and Open Field (OF) tests to identify male rats as trauma resilient or susceptible. We focused on the microRNA (miRNA) profiles of the infralimbic (IL) and prelimbic (PL) cortical regions, known to be crucial in regulating the stress response. Our investigation of stressed rats exposed to the SPS procedure yielded divergent response, and differential expression microRNAs (DEmiRs) analysis indicated significant differences in the IL and PL transcriptional response. In the IL cortex, the GO analysis revealed enriched GO terms in the resilient versus control comparison, specifically related to mitogen-activated protein kinase and MAP kinase signaling pathways for their molecular functions as well as cytosol and nucleoplasm for the biological process. In the susceptible versus resilient comparison, the changes in molecular functions were only manifested in the functions of regulation of transcription involved in the G1/S transition of the mitotic cell cycle and skeletal muscle satellite cell activation. However, no enriched GO terms were found in the susceptible versus control comparison. In the PL cortex, results indicated that the DEmiRs were enriched exclusively in the cellular component level of the endoplasmic reticulum lumen in the comparison between resilient and control rats. Overall, our study utilized an animal model of PTSD to investigate the potential correlation between stress-induced behavioral dysfunction and variations in miRNA expression. The aforementioned discoveries have the potential to pave the way for novel therapeutic approaches for PTSD, which could involve the targeted regulation of transcriptome expression.
Collapse
Affiliation(s)
- Gengdi Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Javed Iqbal
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yan-xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
- School of Mental Health, Jining Medical University, Jining, China
- School of Mental Health, Anhui Medical University, Hefei, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Clinical College of Mental Health, ShenZhen University Health Science Center, Shenzhen, China
| |
Collapse
|
9
|
Vignaud P, Adam O, Palm U, Baeken C, Prieto N, Poulet E, Brunelin J. Can a single session of noninvasive brain stimulation applied over the prefrontal cortex prevent stress-induced cortisol release? Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110667. [PMID: 36273508 DOI: 10.1016/j.pnpbp.2022.110667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION A better understanding of how the hypothalamic-pituitary-adrenal (HPA) axis can be externally regulated is of major importance, especially because hyperreactivity to stress has been proposed as a key factor in the onset and maintenance of many psychiatric conditions. Over the past decades, numerous studies have investigated whether non-invasive brain stimulation (NIBS) can regulate HPA axis reactivity in acute stress situation. As the current results did not allow us to draw clear conclusions, we decided to conduct a systematic review of the literature investigating the effect of a single NIBS session on stress-induced cortisol release. METHODS We searched MEDLINE and Web Of Science for articles indexed through December 2021. Among the 246 articles identified, 15 fulfilled our inclusion criteria with a quality estimated between 52 and 93%. RESULTS Of the different NIBS used and targeted brain regions, stimulating the left dorsolateral prefrontal cortex, with either high frequency repetitive transcranial magnetic stimulation or anodal transcranial direct current stimulation, seems to be the most appropriate for reducing cortisol release in acute stress situations. CONCLUSIONS Despite the heterogeneity of the stimulation parameters, the characteristics of participants, the modalities of cortisol collection, the timing of the NIBS session in relation to the stressor exposure, and methodological considerations, stimulating the left dorsolateral prefrontal cortex can be efficient to modulate stress-induced cortisol release.
Collapse
Affiliation(s)
- Philippe Vignaud
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France; INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France.
| | - Ondine Adam
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| | - Ulrich Palm
- Dept. of Psychiatry and Psychotherapy, Munich University Hospital, Munich, Germany; Medicalpark Chiemseeblick, Bernau-Felden, Germany.
| | - Chris Baeken
- Ghent University, Dept. of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB) Department of Psychiatry (UZBrussel), Belgium; Eindhoven University of Technology, Department of ELectrical Engineering, the Netherlands.
| | - Nathalie Prieto
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France; Department of Psychiatric Emergency, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
10
|
Jiang H, Chen L, Li Y, Gao X, Yang X, Zhao B, Li Y, Wang Y, Yu X, Zhang X, Feng S, Chai Y, Meng H, Ren X, Bao T. Effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to post-traumatic stress disorder. Neurosci Lett 2023; 796:137056. [PMID: 36621587 DOI: 10.1016/j.neulet.2023.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Data from clinical and experimental studies have verified the efficacy and safety of acupuncture in the treatment of post-traumatic stress disorder (PTSD). However, the concrete mechanism has not been well elucidated. The stress-induced activation of inflammatory response is involved in the development and pathogenesis of PTSD. Here, we aimed to investigate the effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to PTSD. Forty male rats were randomly divided into control, model, acupuncture and sertraline group. Within 1 day after adaptive feeding, all rats were exposed to single prolonged stress (SPS), except for the rats in the control group. Rats in acupuncture group were exposed to acupuncture intervention at the acupoints of Baihui (GV20) and Yintang (GV29), 20 min once per day for 15 days. Rats in sertraline group were exposed to a suspension of sertraline and distilled water (0.2 mg/ml), once per day for 15 days continuously. Body weight and elevated plus maze experiment were detected at different time-points to evaluate the behavioral changes of rats. HE staining method was used to observe the basic pathological morphological changes in hippocampus. Immunofluorescence staining method was used to observe the activation of hippocampal microglia. The content of IL-6 and IL-1β in serum were detected by ELISA method. Compared with the control group, the body weight of rats in model group significantly decreased on 8 days, and the percentage of time in open arms and open arm entries decreased significantly on 15 days after SPS procedures, which indicated that SPS induced PTSD-like behavior in rats. Acupuncture exerted therapeutic effect. Simultaneously, the result of HE staining confirmed that SPS induced hippocampal morphological changes in SPS rats. Notably, acupuncture reversed the reduction and pathological injury to some extent. The results have also shown that acupuncture intervention effectively reversed the activated microglia of the hippocampus in rats. Moreover, the expression of IL-1β in serum was significantly decreased by acupuncture intervention. In summary, the present study demonstrated that the role of acupuncture in eliminating PTSD-like behavior might be connected with reversing the pathological process of the inflammatory response mediated by the activation of microglia induced by SPS.
Collapse
Affiliation(s)
- Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| | - Lu Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingzhou Gao
- Beijing ChangPing District Hospital, Beijing, China
| | - Xinjing Yang
- Department of Traditional Chinese Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Bingcong Zhao
- Beijing Key Laboratory of Acupuncture Neuromodulation, Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yahuan Li
- Beijing Increase Biomedical Company Limited, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Shixing Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yemao Chai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Meng
- School of Science, Beijing Technology and Business University, Beijing, China
| | - Xiujun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
12
|
Albuquerque TRD, Macedo LFR, Delmondes GDA, Rolim Neto ML, Almeida TM, Uchida RR, Cordeiro Q, Lisboa KWDSC, Menezes IRAD. Evidence for the beneficial effect of ketamine in the treatment of patients with post-traumatic stress disorder: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2022; 42:2175-2187. [PMID: 35891578 PMCID: PMC9670007 DOI: 10.1177/0271678x221116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder with manifestations somatic resulting from reliving the trauma. The therapy for the treatment of PTSD has limitations, between reduced efficacy and "PTSD pharmacotherapeutic crisis". Scientific evidence has shown that the use of ketamine has benefits for the treatment of depressive disorders and other symptoms present in PTSD compared to other conventional therapies. Therefore, this study aims to analyze the available evidence on the effect of ketamine in the treatment of post-traumatic stress. The systematic review and the meta-analysis were conducted following PRISMA guidelines and RevManager software, using randomized controlled trials and eligible studies of quality criteria for data extraction and analysis. The sample design evaluated included the last ten years, whose search resulted in 594 articles. After applying the exclusion criteria, 35 articles were selected, of which 14 articles were part of the sample, however, only six articles were selected the meta-analysis. The results showed that the ketamine is a promising drug in the management of PTSD with effect more evident performed after 24 h evaluated by MADRS scale. However, the main limitations of the present review demonstrate that more high-quality studies are needed to investigate the influence of therapy, safety, and efficacy.
Collapse
Affiliation(s)
| | | | - Gyllyandeson de Araújo Delmondes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato, Brazil
| | | | - Thales Marcon Almeida
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Ricardo Riyoiti Uchida
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Quirino Cordeiro
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | | | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato, Brazil
| |
Collapse
|
13
|
Li Y, Du Y, Wang C, Lu G, Sun H, Kong Y, Wang W, Lian B, Li C, Wang L, Zhang X, Sun L. (2R,6R)-hydroxynorketamine acts through GluA1-induced synaptic plasticity to alleviate PTSD-like effects in rat models. Neurobiol Stress 2022; 21:100503. [PMID: 36532380 PMCID: PMC9755068 DOI: 10.1016/j.ynstr.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with high morbidity and great social and economic relevance. However, extant pharmacotherapies of PTSD require long-term use to maintain effectiveness and have enormous side effects. The glutamatergic system, especially the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), is an important target of current research on the mechanism of PTSD. Postsynaptic AMPAR function and expression are known to be increased by (2R, 6R)-hydronorketamine (HNK), the primary metabolite of ketamine. However, whether (2R,6R)-HNK alleviates PTSD-like effects via AMPAR upregulation is yet to be known. In the present study, rats were exposed to single prolonged stress and electric foot shock (SPS&S). Afterwards, gradient concentrations of (2R,6R)-HNK (20, 50, and 100 μM) were administered by intracerebroventricular (i.c.v.) injection. Open field, elevated plus maze, freezing behavior, and forced swimming tests were used to examine PTSD-like symptoms. In addition, the protein levels of GluA1, BDNF and PSD-95 were analyzed using western blotting and immunofluorescence, and the synaptic ultrastructure of the prefrontal cortex (PFC) was observed by transmission electron microscopy. We found that (2R,6R)-HNK changed SPS&S-induced behavioral expression, such as increasing autonomous activity and residence time in the open arm and decreasing immobility time. Likewise, (2R,6R)-HNK (50 μM) increased GluA1, BDNF, and PSD-95 protein expression in the PFC. Changes in synaptic ultrastructure induced by SPS&S were reversed by administration of (2R,6R)-HNK. Overall, we find that (2R,6R)-HNK can ameliorate SPS&S-induced fear avoidance in rats, as well as rat cognates of anxiety and depression. This may be related to GluA1-mediated synaptic plasticity in the PFC.
Collapse
Affiliation(s)
- Yu Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YaLin Du
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Chen Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - GuoHua Lu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - WeiWen Wang
- Institute of Psychology of the Chinese Academy of Sciences, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - ChangJiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Ling Wang
- Weifang Medical University, Clinical Competency Training Center Medical Experiment and Training Center, PR China
| | - XianQiang Zhang
- Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| |
Collapse
|
14
|
Yin JB, Liu HX, Shi W, Ding T, Hu HQ, Guo HW, Jin S, Wang XL, Zhang T, Lu YC, Cao BZ. Various BDNF administrations attenuate SPS-induced anxiety-like behaviors. Neurosci Lett 2022; 788:136851. [PMID: 36007708 DOI: 10.1016/j.neulet.2022.136851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Post-traumatic stress disorder (PTSD) has become epidemic following severely stressful incidents. Previous studies have shown that brain-derived neurotrophic factor (BDNF) has anxiolytic effects on various anxiety or depression disorders including PTSD. However, the detailed mechanisms of BDNF for treating PTSD were rarely investigated. In the current study, single-prolonged stress (SPS) was used as an animal model recapitulating specific aspects for a PTSD-like phenotype. The effects of BDNF on SPS-induced anxiety-like behaviors were investigated. We showed that the levels of BDNF in the cerebro-spinal fluid (CSF) were significantly reduced after the rats experienced SPS. The SPS-induced reductions of percentages of time spent in the central area to total time in the open field test, were dose-dependently mitigated after BDNF intracerebroventricular (i.c.v.) injections. BDNF i.c.v. administration also dose-dependently increased the preference of the light box in the light-dark box test. Both expressions of tyrosine kinase receptor B (TrkB) protein and mRNA in the prefrontal cortex (PFC) and amygdala were significantly increased after SPS challenges. BDNF i.c.v. administration attenuated these compensatory increases of TrkB. At last, the anxiolytic effects of BDNF on SPS model were also observed by using other two injection methods. These results inspired us to study that different administrations of BDNF were used in patients with PTSD in the future, in-depthly.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China; Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Hai-Xia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Wei Shi
- Department of Neurosurgery, The 960th Hospital of Joint Logistics Force, PLA, Jinan 250031, PR China
| | - Tan Ding
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China; Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Huai-Qiang Hu
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Hong-Wei Guo
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Shan Jin
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Xiao-Ling Wang
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Ya-Cheng Lu
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Bing-Zhen Cao
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China.
| |
Collapse
|
15
|
Kohut AO, Chaban OS, Dolynskyi RG, Sandal OS, Bursa AI, Bobryk MI, Vertel AV. THE FEATURES OF POSTTRAUMATIC STRESS DISORDER DEVELOPMENT IN PATIENTS WITH DIABETES MELLITUS 2 TYPE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1903-1907. [PMID: 36089877 DOI: 10.36740/wlek202208115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: The revealing of the development of stress-related disorders in patients with type 2 diabetes mellitus (DM 2) to: identify the prevalence of stress-related disorders, particularly, posttraumatic stress disorder (PTSD); study the influence of psychosocial factors on the occurrence and course of stress-related disorders and increase the effectiveness of treatment in DM 2. PATIENTS AND METHODS Materials and methods: Research papers have been found by searching the PubMed database using the keywords ``ptsd and diabetes 2 type" with the result of 74 studies. Totally 25 of selected publications were analysed based on our criteria about the mechanisms through which the influence of psychosocial factors, permanent stressful or traumatic events on the probable risk of PTSD development and their analysis and relationships for the improvement of treatment effectiveness in DM 2 patients who have not been the veterans. CONCLUSION Conclusions: Given the complex neurophysiological relationships between the long-term stress and pathophysiological mechanisms of DM 2 - this group of patients has the higher risk of developing stress-related disorders, including PTSD.
Collapse
Affiliation(s)
- Anna O Kohut
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | - Oleg S Chaban
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | | | - Olha S Sandal
- KOSTIUK INSTITUTE OF PSYCHOLOGY OF NATIONAL ACADEMY OF EDUCATIONAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | | | | | - Anton V Vertel
- SUMY STATE PEDAGOGICAL UNIVERSITY NAMED AFTER A.S. MAKARENKO, SUMY, UKRAINE
| |
Collapse
|
16
|
Xi K, Huang X, Liu T, Liu Y, Mao H, Wang M, Feng D, Wang W, Guo B, Wu S. Translational relevance of behavioral, neural, and electroencephalographic profiles in a mouse model of post-traumatic stress disorder. Neurobiol Stress 2021; 15:100391. [PMID: 34541263 PMCID: PMC8435698 DOI: 10.1016/j.ynstr.2021.100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe, long-term psychological disorder triggered by distressing events. The neural basis and underlying mechanisms of PTSD are not completely understood. Therefore, it is important to determine the pathology of PTSD using reliable animal models that mimic the symptoms of patients. However, the lack of evidence on the clinical relevance of PTSD animal models makes it difficult to interpret preclinical studies from a translational perspective. In this study, we performed a comprehensive screening of the behavioral, neuronal, glial, and electroencephalographic (EEG) profiles in the single prolonged stress and electric foot shock (SPS&S) mouse model. Based on the clinical features of PTSD, we observed fearful and excessive responses to trauma-related environments in the SPS&S mouse model that lasted longer than 14 days. The mice exhibited a defective and strong resistance to the extinction of fear memories caused by auditory cues and also showed enhanced innate fear induced by visual stimuli with concomitant phobias and anxiety. Furthermore, neurons, astrocytes, and microglia in PTSD-related brain regions were activated, supporting abnormal brain activation and neuroimmune changes. EEG assessment also revealed decreased power and impaired coupling strength between cortical regions. These results demonstrated that the SPS&S mouse model recapitulates the behavioral symptoms as well as neural and EEG profiles of PTSD patients, justifying the preclinical use of this mouse model.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengmeng Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS, Zhu G. Ginsenoside Rg1 Prevents PTSD-Like Behaviors in Mice Through Promoting Synaptic Proteins, Reducing Kir4.1 and TNF-α in the Hippocampus. Mol Neurobiol 2021; 58:1550-1563. [PMID: 33215390 PMCID: PMC7676862 DOI: 10.1007/s12035-020-02213-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Ginsenoside Rg1 is efficient to prevent or treat mental disorders. However, the mechanisms underlying the effects of ginsenoside Rg1 on post-traumatic stress disorder (PTSD) are still not known. In this study, single-prolonged stress (SPS) regime, as well as injection of lipopolysaccharide (LPS), was used to produce PTSD-like behaviors in C57 mice, and the effects of ginsenoside Rg1 (10, 20, 40 mg/kg/d, ip, for 14 days) on PTSD-like behaviors were evaluated. Our results showed that ginsenoside Rg1 promoted fear extinction and prevented depression-like behaviors in both LPS and SPS models. Importantly, ginsenoside Rg1 alleviated LPS- or SPS-stimulated expression of pro-inflammatory cytokines (IL-1β and TNF-α), activation of astrocytes and microglia, and reduction of hippocampal synaptic proteins (PSD95, Arc, and GluA1). Ginsenoside Rg1 also reduced the increase of hippocampal Kir4.1 and GluN2A induced by PTSD regime. Importantly, reducing hippocampal astroglial Kir4.1 expression promoted fear extinction and improved depression-like behaviors in LPS-treated mice. Additionally, intracerebroventricular injection of TNF-α caused an impairment of fear extinction and promoted Kir4.1 expression in the hippocampus. Together, our study reveals novel protective effects of ginsenoside Rg1 against PTSD-like behaviors in mice, likely via promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Zhujin Song
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fengming Shen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Pan Xie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Ai-Song Zhu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China.
| |
Collapse
|
18
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Szyndler J, Maciejak P, Chmielewska N, Kołosowska K, Płaźnik A. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours. Behav Brain Res 2020; 386:112591. [PMID: 32194190 DOI: 10.1016/j.bbr.2020.112591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to explore the neurobiological background of individual susceptibility and resistance to the development of posttraumatic stress disorder (PTSD)-like behaviours. Rats were divided into susceptible, PTSD(+), and resistant, PTSD(-), groups based on freezing duration during exposure to aversive context and the time spent in the central area in open field test one week after threefold stress experience (modified single prolonged stress). PTSD(-) rats showed increased concentrations of corticosterone in plasma and changes in GAD67 expression: decreased in the infralimbic cortex (IL) and increased in the lateral amygdala (LA), dentate gyrus (DG), and CA1 area of the hippocampus. Moreover, in this group, we found an increase in the number of CRF-positive nuclei in the parvocellular neurons of the paraventricular hypothalamic nucleus (pPVN). The PTSD(+) group, compared to PTSD(-) rats, had decreased concentrations of corticosterone in plasma and reduced CRF expression in the pPVN, higher CRF expression in the CA1, increased expression of CRF-positive nuclei and GR receptors in the CA3 area of the hippocampus, and increased expression of GR receptors in the DG and the central amygdala (CeA). Biochemical analysis showed higher concentrations of noradrenaline, glutamic acid in the dorsal hippocampus and amygdala and lower levels of dopamine and its metabolites in the amygdala of the PTSD(+) group than in the PTSD(-) group. The study revealed different behavioural and biochemical profiles of PTSD(+) and PTSD(-) rats and suggested that individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity may determine hippocampal- and amygdala-dependent memory and fear processing.
Collapse
Affiliation(s)
- Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097, Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097, Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097, Warsaw, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| |
Collapse
|
19
|
Paul MA, Love RJ, Jetly R, Richardson JD, Lanius RA, Miller JC, MacDonald M, Rhind SG. Blunted Nocturnal Salivary Melatonin Secretion Profiles in Military-Related Posttraumatic Stress Disorder. Front Psychiatry 2019; 10:882. [PMID: 31866882 PMCID: PMC6910089 DOI: 10.3389/fpsyt.2019.00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Sleep disturbances are a hallmark of posttraumatic stress disorder (PTSD), yet few studies have evaluated the role of dysregulated endogenous melatonin secretion in this condition. Methods: This study compared the sleep quality and nocturnal salivary melatonin profiles of Canadian Armed Forces (CAF) personnel diagnosed with PTSD, using the Clinician Administered PTSD Scale (CAPS score ≥50), with two healthy CAF control groups; comprising, a "light control" (LC) group with standardized evening light exposure and "normal control" (NC) group without light restriction. Participants were monitored for 1-week using wrist actigraphy to assess sleep quality, and 24-h salivary melatonin levels were measured (every 2h) by immunoassay on the penultimate day in a dim-light (< 5 lux) laboratory environment. Results: A repeated measures design showed that mean nocturnal melatonin concentrations for LC were higher than both NC (p = .03) and PTSD (p = .003) with no difference between PTSD and NC. Relative to PTSD, NC had significantly higher melatonin levels over a 4-h period (01 to 05 h), whereas the LC group had higher melatonin levels over an 8-h period (23 to 07 h). Actigraphic sleep quality parameters were not different between healthy controls and PTSD patients, likely due to the use of prescription sleep medications in the PTSD group. Conclusions: These results indicate that PTSD is associated with blunted nocturnal melatonin secretion, which is consistent with previous findings showing lower melatonin after exposure to trauma and suggestive of severe chronodisruption. Future studies targeting the melatonergic system for therapeutic intervention may be beneficial for treatment-resistant PTSD.
Collapse
Affiliation(s)
- Michel A Paul
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Ryan J Love
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - J Donald Richardson
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Operational Stress Injury Clinic, Parkwood Institute, London, ON, Canada.,MacDonald Franklin Operational Stress Injury Research Centre, Lawson Research Institute, London, ON, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Neuroscience, Western University, London, ON, Canada
| | - James C Miller
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Michael MacDonald
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - Shawn G Rhind
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| |
Collapse
|