1
|
Su B, Wang A, Lin J, Xie D, Shan X. Signal-specific spatiotemporal organization of AtRGS1 in plant pattern-triggered immunity. THE NEW PHYTOLOGIST 2024; 242:841-852. [PMID: 38453800 DOI: 10.1111/nph.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Bodan Su
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National State Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anqi Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Kim DM, Sakamoto I, Arioka M. Class VI G protein-coupled receptors in Aspergillus oryzae regulate sclerotia formation through GTPase-activating activity. Appl Microbiol Biotechnol 2024; 108:141. [PMID: 38231240 PMCID: PMC10794492 DOI: 10.1007/s00253-023-12862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in eukaryotes that sense and transduce extracellular signals into cells. In Aspergillus oryzae, 16 canonical GPCR genes are identified and classified into nine classes based on the sequence similarity and proposed functions. Class VI GPCRs (AoGprK-1, AoGprK-2, and AoGprR in A. oryzae), unlike other GPCRs, feature a unique hybrid structure containing both the seven transmembrane (7-TM) and regulator of G-protein signaling (RGS) domains, which is not found in animal GPCRs. We report here that the mutants with double or triple deletion of class VI GPCR genes produced significantly increased number of sclerotia compared to the control strain when grown on agar plates. Interestingly, complementation analysis demonstrated that the expression of the RGS domain without the 7-TM domain is sufficient to restore the phenotype. In line with this, among the three Gα subunits in A. oryzae, AoGpaA, AoGpaB, and AoGanA, forced expression of GTPase-deficient mutants of either AoGpaA or AoGpaB caused an increase in the number of sclerotia formed, suggesting that RGS domains of class VI GPCRs are the negative regulators of these two GTPases. Finally, we measured the expression of velvet complex genes and sclerotia formation-related genes and found that the expression of velB was significantly increased in the multiple gene deletion mutants. Taken together, these results demonstrate that class VI GPCRs negatively regulate sclerotia formation through their GTPase-activating activity in the RGS domains. KEY POINTS: • Class VI GPCRs in A. oryzae regulate sclerotia formation in A. oryzae • RGS function of class VI GPCRs is responsible for regulation of sclerotia formation • Loss of class VI GPCRs resulted in increased expression of sclerotia-related genes.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Itsuki Sakamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:616-631. [PMID: 37910396 DOI: 10.1111/tpj.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kajal Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Su B, Wang A, Xie D, Shan X. VA-TIRFM-based SM kymograph analysis for dwell time and colocalization of plasma membrane protein in plant cells. PLANT METHODS 2023; 19:70. [PMID: 37422677 DOI: 10.1186/s13007-023-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND The plasma membrane (PM) proteins function in a highly dynamic state, including protein trafficking and protein homeostasis, to regulate various biological processes. The dwell time and colocalization of PM proteins are considered to be two important dynamic features determining endocytosis and protein interactions, respectively. Dwell-time and colocalization detected using traditional fluorescence microscope techniques are often misestimated due to bulk measurement. In particular, analyzing these two features of PM proteins at the single-molecule level with spatiotemporal continuity in plant cells remains greatly challenging. RESULTS We developed a single molecular (SM) kymograph method, which is based on variable angle-total internal reflection fluorescence microscopy (VA-TIRFM) observation and single-particle (co-)tracking (SPT) analysis, to accurately analyze the dwell time and colocalization of PM proteins in a spatial and temporal manner. Furthermore, we selected two PM proteins with distinct dynamic behaviors, including AtRGS1 (Arabidopsis regulator of G protein signaling 1) and AtREM1.3 (Arabidopsis remorin 1.3), to analyze their dwell time and colocalization upon jasmonate (JA) treatment by SM kymography. First, we established new 3D (2D+t) images to view all trajectories of the interest protein by rotating these images, and then we chose the appropriate point without changing the trajectory for further analysis. Upon JA treatment, the path lines of AtRGS1-YFP appeared curved and short, while the horizontal lines of mCherry-AtREM1.3 demonstrated limited changes, indicating that JA might initiate the endocytosis of AtRGS1. Analysis of transgenic seedlings coexpressing AtRGS1-YFP/mCherry-AtREM1.3 revealed that JA induces a change in the trajectory of AtRGS1-YFP, which then merges into the kymography line of mCherry-AtREM1.3, implying that JA increases the colocalization degree between AtRGS1 and AtREM1.3 on the PM. These results illustrate that different types of PM proteins exhibit specific dynamic features in line with their corresponding functions. CONCLUSIONS The SM-kymograph method provides new insight into quantitively analyzing the dwell time and correlation degree of PM proteins at the single-molecule level in living plant cells.
Collapse
Affiliation(s)
- Bodan Su
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Anqi Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Xiao L, Ma W, Zhang J, Pu X, Rengel Z, Song Z, Chen Q. Phytomelatonin interferes with flavonols biosynthesis to regulate ROS production and stomatal closure in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153977. [PMID: 37062233 DOI: 10.1016/j.jplph.2023.153977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Flavonols are well-known antioxidants that prevent stomatal closure via interfering with ROS signaling. Phytomelatonin regulates stomatal closure, but the signaling pathways are still largely unknown. Here, we investigated the role of flavonols in phytomelatonin-mediated stomatal closure in tobacco plants. The application of melatonin induced stomatal closure through NADPH oxidase-mediated ROS production. Transgenic tobacco plants overexpressing soybean GmSNAT1 (coding for serotonin N-acetyltransferase that catalyzes the penultimate step in phytomelatonin biosynthesis) had higher phytomelatonin concentration, accumulated more ROS in guard cells and were more sensitive to melatonin-induced stomatal closure than the wild-type plants, which was associated with the higher expression of PMTR1-homologous genes. Exogenous melatonin decreased flavonol concentrations in guard cells and the expression of flavonoid-related genes in wild-type and transgenic tobacco plants, and these inhibitory effects were more obvious in GmSNAT1-overexpressing plants than the wild type. However, the melatonin-mediated stomatal closure and ROS production were diminished by the application of kaempferol (a type of flavonol). Additionally, transgenic tobacco plants with increased expression of NtFLS (encoding flavonol synthase) were less sensitive to melatonin-induced stomatal closure. In conclusion, phytomelatonin hampers the biosynthesis of flavonols in guard cells, which results in high concentration of ROS and induces stomatal closure in tobacco plants.
Collapse
Affiliation(s)
- Lin Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China; Yunnan Modern Professional Technology College, 675000, Chuxiong, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
6
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
7
|
Qi X, Gu P, Shan X. Current progress of PM-localized protein functions in jasmonate pathway. PLANT SIGNALING & BEHAVIOR 2021; 16:1906573. [PMID: 33818272 PMCID: PMC8143263 DOI: 10.1080/15592324.2021.1906573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate (JA), a class of lipid-derived phytohormone, regulates diverse developmental processes and responses to abiotic or biotic stresses. The biosynthesis and signaling of JA mainly occur in various organelles, except for the plasma membrane (PM). Recently, several PM proteins have been reported to be associated with the JA pathway. This mini-review summarized the recent progress on the functional role of PM-localized proteins involved in JA transportation, JA-related defense responses, and JA-regulated endocytosis.
Collapse
Affiliation(s)
- Xueying Qi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pan Gu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoyi Shan
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Single-Molecule Imaging in Living Plant Cells: A Methodological Review. Int J Mol Sci 2021; 22:ijms22105071. [PMID: 34064786 PMCID: PMC8151321 DOI: 10.3390/ijms22105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.
Collapse
|
9
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
10
|
Patel JS, Selvaraj V, Gunupuru LR, Kharwar RN, Sarma BK. Plant G-protein signaling cascade and host defense. 3 Biotech 2020; 10:219. [PMID: 32355593 DOI: 10.1007/s13205-020-02201-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play a crucial role in signal transduction and regulate plant responses against biotic and abiotic stresses. Necrotrophic pathogens trigger Gα subunit and, in contrast, sometimes Gβγ dimers. Beneficial microbes play a vital role in the activation of heterotrimeric G-proteins in plants against biotrophic and necrotrophic pathogens. The subunits of G-protein (α, β, and γ) are activated differentially against different kinds of pathogens which in turn regulates the entry of the pathogen in a plant cell. Defense mediated by G-proteins in plants imparts resistance against several pathogens. Activation of different G-protein subunits depends on the mode of nutrition of the pathogen. The current review discussed the role of the three subunits against various pathogens. It appeared to be specific in the individual host-pathogen system as well as the role of effectors in the induction of G-proteins. We also discussed the G-protein-mediated production of reactive oxygen species (ROS), including H2O2, activation of NADPH oxidases, hypersensitive response (HR), phospholipases, and ion channels in response to microorganisms.
Collapse
|
11
|
Dynamics and Endocytosis of Flot1 in Arabidopsis Require CPI1 Function. Int J Mol Sci 2020; 21:ijms21051552. [PMID: 32106431 PMCID: PMC7084554 DOI: 10.3390/ijms21051552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane microdomains are nano-scale domains (10–200 nm) enriched in sterols and sphingolipids. They have many important biological functions, including vesicle transport, endocytosis, and pathogen invasion. A previous study reported that the membrane microdomain-associated protein Flotillin1 (Flot1) was involved in plant development in Arabidopsis thaliana; however, whether sterols affect the plant immunity conveyed by Flot1 is unknown. Here, we showed that the root length in sterol-deficient cyclopropylsterol isomerase 1 (cpi1-1) mutants expressing Flot1 was significantly shorter than in control seedlings. The cotyledon epidermal cells in cpi1-1 mutants expressing Flot1 were smaller than in controls. Moreover, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) and single-particle tracking (SPT) analysis demonstrated that the long-distance Flot1-GFP movement was decreased significantly in cpi1-1 mutants compared with the control seedlings. Meanwhile, the value of the diffusion coefficient Ĝ was dramatically decreased in cpi1-1 mutants after flagelin22 (flg22) treatment compared with the control seedlings, indicating that sterols affect the lateral mobility of Flot1-GFP within the plasma membrane. Importantly, using confocal microscopy, we determined that the endocytosis of Flot1-GFP was decreased in cpi1-1 mutants, which was confirmed by fluorescence cross spectroscopy (FCS) analysis. Hence, these results demonstrate that sterol composition plays a critical role in the plant defense responses of Flot1.
Collapse
|
12
|
Gomi K. Jasmonic Acid: An Essential Plant Hormone. Int J Mol Sci 2020; 21:ijms21041261. [PMID: 32070064 PMCID: PMC7072857 DOI: 10.3390/ijms21041261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| |
Collapse
|