1
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
3
|
Liu S, Ren J, Liu S, Zhao X, Liu H, Zhou T, Wang X, Liu H, Tang L, Chen H. Resveratrol inhibits autophagy against myocardial ischemia-reperfusion injury through the DJ-1/MEKK1/JNK pathway. Eur J Pharmacol 2023; 951:175748. [PMID: 37149277 DOI: 10.1016/j.ejphar.2023.175748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Resveratrol (RES), a natural polyphenolic compound found in red wine and grape skins, has attracted significant attention due to its cardioprotective properties. DJ-1, a multifunctional protein that participated in transcription regulation and antioxidant defense, was shown to provide a significant protective impact in cardiac cells treated with ischemia-reperfusion. We created a myocardial ischemia-reperfusion (I/R) model in vivo and in vitro by ligating the left anterior descending branch of rats and subjecting H9c2 cells to anoxia/reoxygenation (A/R) to investigate whether RES reduces myocardial ischemia-reperfusion injury by upregulating DJ-1. We discovered that RES dramatically enhanced cardiac function in rats with I/R. Subsequently, we found that RES prevented the rise in autophagy (P62 degradation and LC3-II/LC3-I increase) induced by cardiac ischemia-reperfusion in vitro and in vivo. Notably, the autophagic agonist rapamycin (RAPA) eliminated RES-induced cardioprotective effects. In addition, Further data showed that RES significantly increased the expression of DJ-1 in the myocardium with the treatment of I/R. At the same time, pretreatment with RES reduced phosphorylation of MAPK/ERK kinase kinase 1 (MEKK1) and Jun N-terminal Kinase (JNK) stimulated by cardiac ischemia-reperfusion, and Beclin-1 mRNA and protein levels while decreasing lactate dehydrogenase (LDH) and improving cell viability. However, the lentiviral shDJ-1 and JNK agonist anisomycin disrupted the effects of RES. In summary, RES could inhibit autophagy against myocardial ischemia-reperfusion injury through DJ-1 modulation of the MEKK1/JNK pathway, providing a novel therapeutic strategy for cardiac homeostasis.
Collapse
Affiliation(s)
- Song Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jianmin Ren
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shiyi Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhao
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huiru Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Zhou
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xueying Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Haoyue Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lei Tang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Heping Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
4
|
Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, Ulasov I, Dong JJ, Hatiboglu MA. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci 2021; 22:ijms22031318. [PMID: 33525678 PMCID: PMC7865981 DOI: 10.3390/ijms22031318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a “double-edged sword”, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Moniba Rahim
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India;
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Elif Burce Elbasan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (J.-J.D.); (M.A.H.)
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
- Correspondence: (J.-J.D.); (M.A.H.)
| |
Collapse
|
5
|
Du H, Chen L, Luo F, Chen X, Li Y, Cheng Q. Beclin-1 expression is associated with prognosis in a Bcl-2-dependent manner in non-small cell lung cancer. Oncol Lett 2020; 20:9. [PMID: 32802158 DOI: 10.3892/ol.2020.11870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Beclin-1 and Bcl-2 expression abnormalities have been confirmed in different types of cancer. As important regulators of autophagy and apoptosis, respectively, these molecules serve a complex role in tumorigenesis. However, limited information is currently available regarding the association between Beclin-1 and Bcl-2 in (NSCLC). In the present study, the expression levels of Beclin-1 and Bcl-2 were detected in lung cancer tissues, and their prognostic significance was analyzed for NSCLC. A total of 120 patients with lung cancer who underwent surgical resection were included in the present study. Beclin-1 and Bcl-2 expression was assessed using immunohistochemistry and their associations with the overall survival (OS) in patients with NSCLC was examined. The expression rate of Beclin-1 was significantly lower in NSCLC tissues compared with that in adjacent tissues, whereas the expression rate of Bcl-2 was significantly higher in lung cancer tissues compared with that in adjacent tissues. Additionally, Beclin-1 and Bcl-2 protein expression was strongly associated (P<0.05) in NSCLC. Patients with NSCLC with low Beclin-1 expression were in more advanced stages, with more lymph node metastasis and more poorly differentiated tumors. Similarly, patients with NSCLC with high Bcl-2 expression were also in a more advanced stage and had more lymph node metastasis. Cox regression analysis revealed that the association between Bcl-2 expression and survival was not significant, while a multivariate analysis revealed that Beclin-1 expression was significantly associated with OS. Notably, Beclin-1 expression was significantly associated with OS only in patients with high Bcl-2 expression. In conclusion, the present data indicated that the autophagy activity is decreased in NSCLC. Beclin-1 expression was downregulated, while Bcl-2 expression was upregulated in NSCLC tissues compared with that in adjacent tissues. Additionally, these two proteins were associated with the occurrence and progression of NSCLC. Beclin-1 may be a promising prognostic marker for patients with NSCLC with high Bcl-2 expression. The present findings provided a more accurate prognostic assessment for patients with NSCLC. Furthermore, they may be used to actively follow-up and promptly treat patients with a poor prognosis, which may benefit a greater number of patients with NSCLC.
Collapse
Affiliation(s)
- Hailei Du
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 201821, P.R. China
| | - Fangxiu Luo
- Department of Pathology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 201821, P.R. China
| | - Xueyu Chen
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yong Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 201821, P.R. China
| | - Qijian Cheng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 201821, P.R. China
| |
Collapse
|