1
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Li Z, Zhu J, Ouyang H. Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis. Front Pharmacol 2023; 14:1303012. [PMID: 38155904 PMCID: PMC10754536 DOI: 10.3389/fphar.2023.1303012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Hepatic fibrosis is the formation of scar tissue in the liver. This scar tissue replaces healthy liver tissue and can lead to liver dysfunction and failure if left untreated. It is usually caused by chronic liver disease, such as hepatitis B or C, alcohol abuse, or non-alcoholic fatty liver disease. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of hepatic stellate cells (HSCs). HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of HSCs. HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Traditional Chinese medicine (TCM) has been found to target pathological angiogenesis, thereby providing a potential treatment option for hepatic fibrosis. Several studies have demonstrated that TCM exhibits anti-angiogenic effects by inhibiting the production of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-2, and by reducing the proliferation of endothelial cells. Reviewing and highlighting the unique TCM recognition of treating hepatic fibrosis by targeting pathological angiogenesis may shed light on future hepatic fibrosis research.
Collapse
|
3
|
Huang PY, Liu HM, Ko YR, Chang ZY, Lee TY. Electroacupuncture relieves portal hypertension by improving vascular angiogenesis and linking gut microbiota in bile duct ligation rats. Front Microbiol 2023; 14:1207137. [PMID: 37497536 PMCID: PMC10367351 DOI: 10.3389/fmicb.2023.1207137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
The pathological increase in the intrahepatic resistance and decrease peripheral vascular tone in the development of portal hypertension (PHT). PHT has been linked to lower microbial diversity and weakened intestinal barrier, and interplay alters inflammatory signaling cascades. Electroacupuncture (EA) may ameliorate the inflammatory response and limit arterial vasodilatation and portal pressure. This study addresses the possible mechanisms underlying putative hemodynamics effects of EA in PHT rats. PHT was induced by bile duct ligation (BDL) over 7 days in rats. BDL rats were treated with low-frequency EA (2 Hz) at acupoint, ST36, 10 min once daily for 7 consecutive days. EA significantly reduced portal pressure and enhanced maximum contractile responses in the aorta, and blunts the angiogenesis cascade in PHT rats. EA decreased the aortic angiogenesis signaling cascade, reflected by downregulated of ICAM1, VCAM1, VEGFR1, and TGFβR2 levels. In addition, EA preserved claudin-1, occludin, and ZO-1 levels in BDL-induced PHT model. Furthermore, EA demonstrates to have a positive effect on the gut Bacteroidetes/Firmicutes ratio and to reduce pro-inflammatory cytokines and endotoxins. These results summarize the potential role of EA in the gut microbiota could potentially lead to attenuate intestine injury which could further contribute to vascular reactivity in PHT rats.
Collapse
Affiliation(s)
- Po-Yu Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Chinese Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Ru Ko
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
4
|
Al-Najjar AH, Ayob AR, Awad AS. Role of Lactoferrin in Treatment of Bile Duct Ligation-Induced Hepatic Fibrosis in Rats: Impact on Inflammation and TGF-β1/Smad2/α SMA Signaling Pathway. J Clin Exp Hepatol 2023; 13:428-436. [PMID: 37250877 PMCID: PMC10213847 DOI: 10.1016/j.jceh.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2022] [Indexed: 05/31/2023] Open
Abstract
Background Hepatic fibrosis is a major health issue that might lead to hepatic cirrhosis and cancer. One of its main causes is cholestasis, which has been stimulated by bile duct ligation (BDL) to block the bile flow from the liver. As for the treatment, lactoferrin (LF), the iron-binding glycoprotein, has been evaluated in various studies for the treatment of infections, inflammation, and cancer. The current study aims to investigate the curative effects of LF on BDL-induced hepatic fibrosis in rats. Methods Rats were randomly allocated into 4 groups: (1) Control sham, (2) BDL: that have been subjected to a surgery of BDL, (3) BDL + LF: 14 days later after surgery; they have been subjected to LF treatment (300 mg/kg/day, po) for two weeks, and (4) LF group has been administered (300 mg/kg/day, po) for two weeks. Results BDL elevated inflammatory markers (tumor necrosis factor-alpha and interleukin -1beta (IL-1β) by 635% and 250% (P ≤ 0.05), respectively, as sham group), beside it decreased the anti-inflammatory cytokine, interleukin- 10 (IL-10) by 47.7% (P ≤ 0.05) as sham group, causing inflammation, and fibrosis of the liver by the up-regulation of transforming growth factor-beta 1 (TGF-β1)/Smad2/α-smooth muscle actin (SMA) signaling pathway. LF treatment ameliorated these effects through its anti-inflammatory action (it significantly decreased tumor necrosis factor-alpha and IL-1β by 166% and 159% (P ≤ 0.05), respectively, as sham group, while increased IL-10 by 86.8% (P ≤ 0.05), as sham group) and anti-fibrotic effect by the down-regulation of TGF-β1/Smad2/α-SMA signaling pathway. These results were confirmed by histopathological examination. Conclusion lactoferrin shows promising results for the treatment of hepatic fibrosis via attenuating the TGF-β1/Smad2/α-SMA pathway and through its properties.
Collapse
Affiliation(s)
- Aya H. Al-Najjar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya R. Ayob
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, Giza, Egypt
| | - Azza S. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Wei C, Qiu J, Wu Y, Chen Z, Yu Z, Huang Z, Yang K, Hu H, Liu F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115550. [PMID: 35863612 DOI: 10.1016/j.jep.2022.115550] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is mainly characterized by cholestasis. If not treated, it will deteriorate to cholestatic hepatitis, liver fibrosis, liver cirrhosis, and even liver failure. CLD has a high clinical incidence, and limited treatment with single therapy. In the long-term clinical exploration, traditional Chinese medicine (TCM) has been corroborated with unique therapeutic effects on the CLD process. AIM OF THIS REVIEW This paper summarizes the effective single and compound TCMs for the treatment of CLD. According to 4 important clinical stages of CLD: cholestasis, hepatitis, liver fibrosis, liver cirrhosis, pharmacological effects and mechanisms of 5 typical TCM examples are reviewed, aims to provide basis for clinical drug selection in different processes of CLD. MATERIALS AND METHODS Relevant scientific articles regarding therapeutic effects of TCM for the CLD were collected from different databases. We collated three single herbs including Artemisia scoparia Waldst. et Kit. or Artemisia capillaris Thunb. (Artemisiae Scopariae Herba, Yin Chen in Chinese), Paeonia lactiflora Pall. or Paeonia veitchii Lynch. (Paeoniae radix rubra, Chi Shao in Chinese), Poria cocos (Schw.) Wolf (Poria, Fu Ling in Chinese), and two compound herbs of Huang Qi Decoction (HQD) and Yin Chen Hao Decoction (YCHD) to studied and analyzed. RESULTS We proposed five promising TCMs treatments for the important developmental stages of CLD. Among them, Yin Chen is an essential medicine for protecting liver and gallbladder, and its TCM prescription is also a promising strategy for cholestasis. Based on clinical evidence, high-dose application of Chi Shao is a clinical special treatment of cholestasis hepatitis. Fu Ling can regulate immune cells and increase antibody levels in serum, which is expected to be an emerging therapy to prevent cholestatic liver fibrosis to cirrhosis. HQD can be used as routine clinical medicine for liver fibrosis. In addition, YCHD can exert better comprehensive advantages with multiple components, can treat the whole course of CLD and prevent it from developing to the end-stage. CONCLUSION Yin Chen, Chi Shao, Fu Ling, HQD and YCHD have shown good clinical efficacy in controlling the development of CLD. Clinically, it is easier to curb the development of CLD by adopting graded diagnosis and treatment measures. We suggest that CLD should be risk stratified in clinical treatment to ensure personalized treatment for patients, so as to slow down the development of the disease.
Collapse
Affiliation(s)
- Chunlei Wei
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Jing Qiu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Fang Liu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| |
Collapse
|
6
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|