1
|
Szél V, Zsidó BZ, Hetényi C. Enthalpic Classification of Water Molecules in Target-Ligand Binding. J Chem Inf Model 2024; 64:6583-6595. [PMID: 39135312 DOI: 10.1021/acs.jcim.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Water molecules play various roles in target-ligand binding. For example, they can be replaced by the ligand and leave the surface of the binding pocket or stay conserved in the interface and form bridges with the target. While experimental techniques supply target-ligand complex structures at an increasing rate, they often have limitations in the measurement of a detailed water structure. Moreover, measurements of binding thermodynamics cannot distinguish between the different roles of individual water molecules. However, such a distinction and classification of the role of individual water molecules would be key to their application in drug design at atomic resolution. In this study, we investigate a quantitative approach for the description of the role of water molecules during ligand binding. Starting from complete hydration structures of the free and ligand-bound target molecules, binding enthalpy scores are calculated for each water molecule using quantum mechanical calculations. A statistical evaluation showed that the scores can distinguish between conserved and displaced classes of water molecules. The classification system was calibrated and tested on more than 1000 individual water positions. The practical tests of the enthalpic classification included important cases of antiviral drug research on HIV-1 protease inhibitors and the Influenza A ion channel. The methodology of classification is based on open source program packages, Gromacs, Mopac, and MobyWat, freely available to the scientific community.
Collapse
Affiliation(s)
- Viktor Szél
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| |
Collapse
|
2
|
Szél V, Zsidó BZ, Jeszenői N, Hetényi C. Target-ligand binding affinity from single point enthalpy calculation and elemental composition. Phys Chem Chem Phys 2023; 25:31714-31725. [PMID: 37964670 DOI: 10.1039/d3cp04483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Reliable target-ligand binding thermodynamics data are essential for successful drug design and molecular engineering projects. Besides experimental methods, a number of theoretical approaches have been introduced for the generation of binding thermodynamics data. However, available approaches often neglect electronic effects or explicit water molecules influencing target-ligand interactions. To handle electronic effects within a reasonable time frame, we introduce a fast calculator QMH-L using a single target-ligand complex structure pre-optimized at the molecular mechanics level. QMH-L is composed of the semi-empirical quantum mechanics calculation of binding enthalpy with predicted explicit water molecules at the complex interface, and a simple descriptor based on the elemental composition of the ligand. QMH-L estimates the target-ligand binding free energy with a root mean square error (RMSE) of 0.94 kcal mol-1. The calculations also provide binding enthalpy values and they were compared with experimental binding thermodynamics data collected from the most reliable isothermal titration calorimetry studies of systems including various protein targets and challenging, large peptide ligands with a molecular weight of up to 2-3 thousand. The single point enthalpy calculations of QMH-L require modest computational resources and are based on short runs with open source and/or free software like Gromacs, Mopac, MobyWat, and Fragmenter. QMH-L can be applied for fast, automated scoring of drug candidates during a virtual screen, enthalpic engineering of new ligands or thermodynamic explanation of complex interactions.
Collapse
Affiliation(s)
- Viktor Szél
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Norbert Jeszenői
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| |
Collapse
|
3
|
Liu J, Wan J, Ren Y, Shao X, Xu X, Rao L. DOX_BDW: Incorporating Solvation and Desolvation Effects of Cavity Water into Nonfitting Protein-Ligand Binding Affinity Prediction. J Chem Inf Model 2023; 63:4850-4863. [PMID: 37539963 DOI: 10.1021/acs.jcim.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously. The newly developed method, DOX_BDW, was validated against a total of 765 noncovalent and covalent protein-ligand binding pairs, including the CASF2016 core set, Cov_2022 covalent binding testing set, and six testing sets for the hit and lead compound optimization (HLO) simulation. In all of the testing sets, the DOX_BDW method was able to produce PLBA predictions that were strongly correlated with the corresponding experimental data (R = 0.66-0.85). The overall performance of DOX_BDW is better than the current empirical scoring functions that are heavily parameterized. DOX_BDW is particularly outstanding for the covalent binding situation, implying the need for considering an electronic structure in covalent drug design. Furthermore, the method is especially recommended to be used in the HLO scenario of SBDD, where hundreds of similar derivatives need to be screened and refined. The computational cost of DOX_BDW is affordable, and its accuracy is remarkable.
Collapse
Affiliation(s)
- Jiaqi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Jian Wan
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Xubo Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education (MOE) Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Li Rao
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 43009, People's Republic of China
| |
Collapse
|
4
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Börzsei R, Bayarsaikhan B, Zsidó BZ, Lontay B, Hetényi C. The Structural Effects of Phosphorylation of Protein Arginine Methyltransferase 5 on Its Binding to Histone H4. Int J Mol Sci 2022; 23:ijms231911316. [PMID: 36232624 PMCID: PMC9569665 DOI: 10.3390/ijms231911316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) enzyme is responsible for arginine methylation on various proteins, including histone H4. PRMT5 is a promising drug target, playing a role in the pathomechanism of several diseases, especially in the progression of certain types of cancer. It was recently proved that the phosphorylation of PRMT5 on T80 residue increases its methyltransferase activity; furthermore, elevated levels of the enzyme were measured in the case of human hepatocellular carcinoma and other types of tumours. In this study, we constructed the complexes of the unmodified human PRMT5-methylosome protein 50 (MEP50) structure and its T80-phosphorylated variant in complex with the full-length histone H4 peptide. The full-length histone H4 was built in situ into the human PRMT5-MEP50 enzyme using experimental H4 fragments. Extensive molecular dynamic simulations and structure and energy analyses were performed for the complexed and apo protein partners, as well. Our results provided an atomic level explanation for two important experimental findings: (1) the increased methyltransferase activity of the phosphorylated PRMT5 when compared to the unmodified type; (2) the PRMT5 methylates only the free form of histone H4 not bound in the nucleosome. The atomic level complex structure H4-PRMT5-MEP50 will help the design of new inhibitors and in uncovering further structure–function relationships of PRMT enzymes.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
6
|
Börzsei R, Zsidó BZ, Bálint M, Helyes Z, Pintér E, Hetényi C. Exploration of Somatostatin Binding Mechanism to Somatostatin Receptor Subtype 4. Int J Mol Sci 2022; 23:ijms23136878. [PMID: 35805885 PMCID: PMC9266823 DOI: 10.3390/ijms23136878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Somatostatin (also named as growth hormone-inhibiting hormone or somatotropin release-inhibiting factor) is a regulatory peptide important for the proper functioning of the endocrine system, local inflammatory reactions, mood and motor coordination, and behavioral responses to stress. Somatostatin exerts its effects via binding to G-protein-coupled somatostatin receptors of which the fourth subtype (SSTR4) is a particularly important receptor mediating analgesic, anti-inflammatory, and anti-depressant effects without endocrine actions. Thus, SSTR4 agonists are promising drug candidates. Although the knowledge of the atomic resolution-binding modes of SST would be essential for drug development, experimental elucidation of the structures of SSTR4 and its complexes is still awaiting. In the present study, structures of the somatostatin–SSTR4 complex were produced using an unbiased, blind docking approach. Beyond the static structures, the binding mechanism of SST was also elucidated in the explicit water molecular dynamics (MD) calculations, and key binding modes (external, intermediate, and internal) were distinguished. The most important residues on both receptor and SST sides were identified. An energetic comparison of SST binding to SSTR4 and 2 offered a residue-level explanation of receptor subtype selectivity. The calculated structures show good agreement with available experimental results and indicate that somatostatin binding is realized via prerequisite binding modes and an induced fit mechanism. The identified binding modes and the corresponding key residues provide useful information for future drug design targeting SSTR4.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
7
|
Wei L, Chen Y, Liu J, Rao L, Ren Y, Xu X, Wan J. Cov_DOX: A Method for Structure Prediction of Covalent Protein-Ligand Bindings. J Med Chem 2022; 65:5528-5538. [PMID: 35353519 DOI: 10.1021/acs.jmedchem.1c02007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A handful of molecular docking tools have been extended to enable a covalent docking. However, all of them face the challenge brought by the covalent bond between proteins and ligands. Many covalent drug design scenarios still heavily rely on demanding crystallographic experiments for accurate binding structures. Aiming at filling the gap between covalent dockings and crystallographic experiments, we develop and validate a hybrid method, dubbed as Cov_DOX, in this work. Cov_DOX achieves an overall success rate of 81% with RMSD < 2 Å for the Top 1 pose prediction in the validation against a test set including 405 crystal structures for covalent protein-ligand complexes, covering various types of the warhead chemistry and receptors. Such accuracy is not far from the much more demanding crystallographic experiments, in sharp contrast to the performance of the covalent docking front runners (success rate: 40-60%).
Collapse
Affiliation(s)
- Lin Wei
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| | - Yaru Chen
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| | - Jiaqi Liu
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| | - Li Rao
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| | - Yanliang Ren
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education (MOE) Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Jian Wan
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 43009, China
| |
Collapse
|
8
|
Protein Fluctuations in Response to Random External Forces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elastic network models (ENMs) have been widely used in the last decades to investigate protein motions and dynamics. There the intrinsic fluctuations based on the isolated structures are obtained from the normal modes of these elastic networks, and they generally show good agreement with the B-factors extracted from X-ray crystallographic experiments, which are commonly considered to be indicators of protein flexibility. In this paper, we propose a new approach to analyze protein fluctuations and flexibility, which has a more appropriate physical basis. It is based on the application of random forces to the protein ENM to simulate the effects of collisions of solvent on a protein structure. For this purpose, we consider both the Cα-atom coarse-grained anisotropic network model (ANM) and an elastic network augmented with points included for the crystallized waters. We apply random forces to these protein networks everywhere, as well as only on the protein surface alone. Despite the randomness of the directions of the applied perturbations, the computed average displacements of the protein network show a remarkably good agreement with the experimental B-factors. In particular, for our set of 919 protein structures, we find that the highest correlation with the B-factors is obtained when applying forces to the external surface of the water-augmented ANM (an overall gain of 3% in the Pearson’s coefficient for the entire dataset, with improvements up to 30% for individual proteins), rather than when evaluating the fluctuations obtained from the normal modes of a standard Cα-atom coarse-grained ANM. It follows that protein fluctuations should be considered not just as the intrinsic fluctuations of the internal dynamics, but also equally well as responses to external solvent forces, or as a combination of both.
Collapse
|
9
|
Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Jin Zhang
- Department of Chemistry Southern University of Science and Technology Shenzhen China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
10
|
The role of water in ligand binding. Curr Opin Struct Biol 2020; 67:1-8. [PMID: 32942197 DOI: 10.1016/j.sbi.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
|
11
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|