1
|
Bioluminescent test systems based on firefly luciferase for studying stress effects on living cells. Biophys Rev 2022; 14:887-892. [PMID: 36124280 PMCID: PMC9481846 DOI: 10.1007/s12551-022-00978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
The bioluminescent luciferin-luciferase reaction is based on the oxidation of D-luciferin by oxygen in the presence of ATP and magnesium ions, catalyzed by firefly luciferase. The possibilities of using this reaction to study the influence of external effectors of a physical and chemical nature (temperature exposure, additions of drugs, membrane-active compounds, etc.) on living cells (prokaryotes and eukaryotes) are considered. Examples of the use of test systems based on living cells producing thermostable firefly luciferase for monitoring cellular homeostasis are given. The study of the kinetics of changes in the concentration of ATP and luciferase inside and outside cells made it possible to determine in dynamics the metabolic activity, cytotoxicity, and survival of cells under conditions of cellular stress, to study the processes of ATP synthesis/hydrolysis, and to evaluate the effectiveness of lytic agents in changing the permeability of the cell membrane.
Collapse
|
2
|
Sushko ES, Vnukova NG, Churilov GN, Kudryasheva NS. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int J Mol Sci 2022; 23:ijms23095152. [PMID: 35563539 PMCID: PMC9106034 DOI: 10.3390/ijms23095152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 01/20/2023] Open
Abstract
The Gd-containing metallofullerene derivatives are perspective magnetic resonance imaging contrast agents. We studied the bioeffects of a water-soluble fullerene derivative, gadolinium-endohedral fullerenol, with 40−42 oxygen groups (Gd@Fln). Bioluminescent cellular and enzymatic assays were applied to monitor toxicity and antioxidant activity of Gd@Fln in model solutions; bioluminescence was applied as a signaling physiological parameter. The Gd@Fln inhibited bioluminescence at high concentrations (>2·10−1 gL−1), revealing lower toxicity as compared to the previously studied fullerenols. Efficient activation of bioluminescence (up to almost 100%) and consumption of reactive oxygen species (ROS) in bacterial suspension were observed under low-concentration exposure to Gd@Fln (10−3−2·10−1 gL−1). Antioxidant capability of Gd@Fln was studied under conditions of model oxidative stress (i.e., solutions of model organic and inorganic oxidizers); antioxidant coefficients of Gd@Fln were determined at different concentrations and times of exposure. Contents of ROS were evaluated and correlations with toxicity/antioxidant coefficients were determined. The bioeffects of Gd@Fln were explained by hydrophobic interactions, electron affinity, and disturbing of ROS balance in the bioluminescence systems. The results contribute to understanding the molecular mechanism of “hormetic” cellular responses. Advantages of the bioluminescence assays to compare bioeffects of fullerenols based on their structural characteristics were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S. Sushko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Correspondence: ; Tel.: +7-3912-494-242
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Abstract
Tritium is a byproduct of many radiochemical reactions in the nuclear industry, and its effects on aquatic organisms, particularly low-dose effects, deserve special attention. The low-dose effects of tritium on aquatic microbiota have been intensively studied using luminous marine bacteria as model microorganisms. Low-dose physiological activation has been demonstrated and explained by the signaling role of reactive oxygen species through the “bystander effect” in bacterial suspensions. The activation of microbial functions in natural reservoirs by low tritium concentrations can cause unpredictable changes in food chains and imbalances in the natural equilibrium. The incorporation of tritium from the free form into organically bound compounds mainly occurs in the dark and at a temperature of 25 °C. When tritium is ingested by marine animals, up to 56% of tritium is accumulated in the muscle tissue and up to 36% in the liver. About 50% of tritium in the liver is bound in non-exchangeable forms. Human ingestion of water and food products contaminated with background levels of tritium does not significantly contribute to the total dose load on the human body.
Collapse
|
4
|
The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Adaptation of a Bacterial Bioluminescent Assay to Monitor Bioeffects of Gold Nanoparticles. Bioengineering (Basel) 2022; 9:bioengineering9020061. [PMID: 35200414 PMCID: PMC8868574 DOI: 10.3390/bioengineering9020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Our current study aimed to adapt a bioluminescent bacteria-based bioassay to monitor the bioeffects of gold nanoparticles (AuNPs). Luminous marine bacteria Photobacterium phosphoreum and AuNPs modified with polyvinylpyrrolidone were employed; low-concentration (≤10−3 g/L) bioeffects of AuNPs were studied. Bioluminescence intensity was used as an indicator of physiological activity in bacteria. Two additional methods were used: reactive oxygen species (ROS) content was estimated with a chemiluminescent luminol method, and bacterial size was monitored using electron microscopy. The bacterial bioluminescent response to AuNPs corresponded to the “hormesis” model and involved time-dependent bioluminescence activation, as well as a pronounced increase in the number of enlarged bacteria. We found negative correlations between the time courses of bioluminescence and the ROS content in bacterial suspensions, demonstrating the relationship between bioluminescence activation and bacterial ROS consumption. The combined effects of AuNPs and a beta-emitting radionuclide, tritium, revealed suppression of bacterial bioluminescent activity (as compared to their individual effects) and a reduced percentage of enlarged bacteria. Therefore, we demonstrated that our bacteria-based bioluminescence assay is an appropriate tool to study the bioeffects of AuNPs; the bioeffects can be further classified within a unified framework for rapid bioassessment.
Collapse
|
6
|
Kolesnik OV, Rozhko TV, Lapina MA, Solovyev VS, Sachkova AS, Kudryasheva NS. Development of Cellular and Enzymatic Bioluminescent Assay Systems to Study Low-Dose Effects of Thorium. Bioengineering (Basel) 2021; 8:194. [PMID: 34940347 PMCID: PMC8698266 DOI: 10.3390/bioengineering8120194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Thorium is one of the most widespread radioactive elements in natural ecosystems, along with uranium, it is the most important source of nuclear energy. However, the effects of thorium on living organisms have not been thoroughly studied. Marine luminescent bacteria and their enzymes are optimal bioassays for studying low-dose thorium exposures. Luminescent bioassays provide a quantitative measure of toxicity and are characterized by high rates, sensitivity, and simplicity. It is known that the metabolic activity of bacteria is associated with the production of reactive oxygen species (ROS). We studied the effects of thorium-232 (10-11-10-3 M) on Photobacterium phosphoreum and bacterial enzymatic reactions; kinetics of bacterial bioluminescence and ROS content were investigated in both systems. Bioluminescence activation was revealed under low-dose exposures (<0.1 Gy) and discussed in terms of "radiation hormesis". The activation was accompanied by an intensification of the oxidation of a low-molecular reducer, NADH, during the enzymatic processes. Negative correlations were found between the intensity of bioluminescence and the content of ROS in bacteria and enzyme systems; an active role of ROS in the low-dose activation by thorium was discussed. The results contribute to radioecological potential of bioluminescence techniques adapted to study low-intensity radioactive exposures.
Collapse
Affiliation(s)
- Olga V. Kolesnik
- Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russia;
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | | | - Maria A. Lapina
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Vladislav S. Solovyev
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (V.S.S.); (A.S.S.)
| | - Anna S. Sachkova
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (V.S.S.); (A.S.S.)
| | - Nadezhda S. Kudryasheva
- Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russia;
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
7
|
Franco R, Casanovas B, Camps J, Navarro G, Martínez-Pinilla E. Antixoxidant Supplements versus Health Benefits of Brief/Intermittent Exposure to Potentially Toxic Physical or Chemical Agents. Curr Issues Mol Biol 2021; 43:650-664. [PMID: 34287292 PMCID: PMC8929025 DOI: 10.3390/cimb43020047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Although antioxidants can act locally to react with an oxidant, oral administration of "antioxidants" is quite useless in treating oxidative stress in tissues. Furthermore, it does not make sense to consider a vitamin as an antioxidant, but vitamin B3 leads to the in vivo formation of compounds that are essential for reducing this stress. A rigorous treatment of the subject indicates that to deal with oxidative stress, the most direct approach is to enhance the innate antioxidant mechanisms. The question is whether this is possible through daily activities. Diets can contain the necessary components for these mechanisms or may induce the expression of the genes involved in them. Another possibility is that pro-oxidant molecules in food increase the sensitivity and power of the detoxification pathways. This option is based on well-known DNA repair mechanisms after exposure to radiation (even from the Sun), or strong evidence of induction of antioxidant capacity after exposure to powerful pro-oxidants such as H2O2. More experimental work is required to test whether some molecules in food can increase the expression of antioxidant enzymes and/or improve antioxidant mechanisms. Identifying effective molecules to achieve such antioxidant power is critical to the food and nutraceutical industries. The potential of diet-based interventions to combat oxidative stress must be viewed from a new perspective.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Chemistry, University of Barcelona, 08028 Barcelona, Spain; (B.C.); (J.C.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Correspondence: (R.F.); (E.M.-P.); Tel.: +34-934-021-208 (R.F.)
| | - Berta Casanovas
- Department of Biochemistry and Molecular Biomedicine, School of Chemistry, University of Barcelona, 08028 Barcelona, Spain; (B.C.); (J.C.)
| | - Jordi Camps
- Department of Biochemistry and Molecular Biomedicine, School of Chemistry, University of Barcelona, 08028 Barcelona, Spain; (B.C.); (J.C.)
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 02028 Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (R.F.); (E.M.-P.); Tel.: +34-934-021-208 (R.F.)
| |
Collapse
|
8
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Toxicity and Antioxidant Activity of Fullerenol C 60,70 with Low Number of Oxygen Substituents. Int J Mol Sci 2021; 22:ijms22126382. [PMID: 34203700 PMCID: PMC8232284 DOI: 10.3390/ijms22126382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/01/2023] Open
Abstract
Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.
Collapse
|
10
|
Rozhko TV, Nemtseva EV, Gardt MV, Raikov AV, Lisitsa AE, Badun GA, Kudryasheva NS. Enzymatic Responses to Low-Intensity Radiation of Tritium. Int J Mol Sci 2020; 21:E8464. [PMID: 33187108 PMCID: PMC7696592 DOI: 10.3390/ijms21228464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations ≤ 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the 'hormetic' response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon.
Collapse
Affiliation(s)
- Tatiana V. Rozhko
- Department of Medical and Biological Physics, Krasnoyarsk State Medical Academy, 660022 Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Maria V. Gardt
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Alexander V. Raikov
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Albert E. Lisitsa
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Gennadii A. Badun
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia;
| | - Nadezhda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
11
|
Pine Stands as Bioindicators: Justification for Air Toxicity Monitoring in an Industrial Metropolis. ENVIRONMENTS 2020. [DOI: 10.3390/environments7040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Five permanent sample plots (SPs; 200–250 trees per plot) were established in middle-aged high-grade suburban pine stands near the industrial city of Krasnoyarsk, Siberia, Russia. Needle damage, inventory parameters of the stands, and the defense response of the stem phloem were evaluated annually for the years 2002–2019 and attributed to acute or chronic toxic exposures (creeping fire or industrial pollutants, respectively). The results form a basis for using trees as bioindicators. A newly elaborated stem lesion test was formed from a hypothesis on the upward sugar transport for the regeneration of an injured crown, based on Eschrich’s model of bidirectional sugar transport in the phloem. The formation of a phloem lesion was induced by inoculation of the stem with a mycelial extract of the ophiostomatoid fungus Ceratocystis laricicola. The lesion length and its shift relative to the inoculation hole were measured. An increase in the length of needles at early stages of stand weakening by pollutants was found to correspond to the hormesis model (Selye’s adaptation syndrome). A possibility of assessing the chronology of pollutant toxicity and the duration of the recovery period after creeping fire was shown.
Collapse
|
12
|
Ge H, Zhou M, Lv D, Wang M, Xie D, Yang X, Dong C, Li S, Lin P. Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. Int J Mol Sci 2020; 21:E481. [PMID: 31940888 PMCID: PMC7013428 DOI: 10.3390/ijms21020481] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hormesis is a concentration-response phenomenon characterized by low-concentration stimulation and high-concentration inhibition, which typically has a nonmonotonic J-shaped concentration-response curve (J-CRC). The concentration addition (CA) model is the gold standard for studying mixture toxicity. However, the CA model had the predictive blind zone (PBZ) for mixture J-CRC. To solve the PBZ problem, we proposed a segmented concentration addition (SCA) method to predict mixture J-CRC, which was achieved through fitting the left and right segments of component J-CRC and performing CA prediction subsequently. We selected two model compounds including chlortetracycline hydrochloride (CTCC) and oxytetracycline hydrochloride (OTCC), both of which presented J-CRC to Aliivibrio fischeri (AVF). The seven binary mixtures (M1-M7) of CTCC and OTCC were designed according to their molar ratios of 12:1, 10:3, 8:5, 1:1, 5:8, 3:10, and 1:12 referring to the direct equipartition ray design. These seven mixtures all presented J-CRC to AVF. Based on the SCA method, we obtained mixture maximum stimulatory effect concentration (ECm) and maximum stimulatory effect (Em) predicted by SCA, both of which were not available for the CA model. The toxicity interactions of these mixtures were systematically evaluated by using a comprehensive approach, including the co-toxicity coefficient integrated with confidence interval method (CTCICI), CRC, and isobole analysis. The results showed that the interaction types were additive and antagonistic action, without synergistic action. In addition, we proposed the cross point (CP) hypothesis for toxic interactive mixtures presenting J-CRC, that there was generally a CP between mixture observed J-CRC and CA predicted J-CRC; the relative positions of observed and predicted CRCs on either side of the CP would exchange, but the toxic interaction type of mixtures remained unchanged. The CP hypothesis needs to be verified by more mixtures, especially those with synergism. In conclusion, the SCA method is expected to have important theoretical and practical significance for mixture hormesis.
Collapse
Affiliation(s)
- Huilin Ge
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Min Zhou
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Daizhu Lv
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
| | - Mingyue Wang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
| | - Defang Xie
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
| | - Xinfeng Yang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
| | - Cunzhu Dong
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Shuhuai Li
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (M.W.); (D.X.); (X.Y.); (S.L.)
| | - Peng Lin
- Fujian SCUD Power Technology Co., Ltd., Fujian 350004, China;
| |
Collapse
|