1
|
Lang K, Köhler CU, Wichert K, Deix T, Bartsch G, Sommer G, Lübke C, Roghmann F, Reike MJ, Krentel H, Engellandt K, Schiermeier S, Menke V, Noldus J, Behrens T, Brüning T, Käfferlein HU. Urinary DNA-methylation and protein biomarkers identify urothelial carcinoma among other genitourinary diseases and cancer-free individuals. J Transl Med 2024; 22:1061. [PMID: 39587670 PMCID: PMC11590282 DOI: 10.1186/s12967-024-05844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND For more than 80 years, cystoscopy has been the gold standard for identification of urothelial carcinoma (UCa). Because of many factors, such as pain of the patients during this procedure or the costs involved, non-invasive detection of UCa remains a challenge. Herein, we verify our previously identified urinary biomarkers C-X-C Motif Chemokine Ligand 16 (CXCL16) and transforming growth-factor beta induced protein (TGFBI) on the protein level as well as the CpG sites ALOX5, TRPS1 and an intergenic region on Chromosome 16 on DNA methylation level in an independent cross-sectional study. METHODS We collected N = 1119 urines from individuals coming to urological and gynecological check-ups, follow-up care or patients suspicious for UCa or already diagnosed for different urologic or gynecologic cancer entities. We performed methylation analysis of various CpG sites with DNA isolated from urine sediment and quantified the concentration of the protein markers CXCL16 and TGFBI in the corresponding urine supernatant using ELISA. We tested for patient-group differences with two-sided Wilcoxon rank sum tests and examined the performance with receiver operating characteristic curves. For verification, we analyzed the marker performance with previously set cutoff-values and marker combinations with established and experimental algorithms (with logical OR-conjunction, iterative threshold-based biomarker and score combining algorithm "PanelomiX"). RESULTS Evaluation confirmed that our previously identified protein and DNA methylation biomarkers can distinguish UCa from frequent urological and gynecological cancers. CXCL16 and TGFBI discriminated UCa cases with a sensitivity of 31% and 56% and a specificity of 94% and 85%, respectively. Combining methylation markers resulted in UCa detection in men with a sensitivity of 54% and a specificity of 94%. Extending analysis by combining all methylation and protein markers (up to five markers in total) yielded a convincingly high specificity of 97% at a sensitivity of 72% for the identification of UCa patients within a heterogeneous collective of cancer-free individuals and patients suffering from urological or gynecological cancers. CONCLUSION Combining various biomarkers at protein and DNA level demonstrates a new option of non-invasive UCa diagnosis in urine, and thus might help to reduce the number of unnecessary cystoscopies, especially in patients without a history of UCa.
Collapse
Affiliation(s)
- Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Christina U Köhler
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Thomas Deix
- URO DR, Clinic of Urology and Andrology, Mülheimer Str. 37, 40878, Ratingen, Germany
| | - Georg Bartsch
- URO DR, Clinic of Urology and Andrology, Mülheimer Str. 37, 40878, Ratingen, Germany
| | - Gudrun Sommer
- Surgery of Gynecology, Husemannplatz 6-7, 44787, Bochum, Germany
| | - Christiane Lübke
- Surgery of Gynecology, Husemannplatz 6-7, 44787, Bochum, Germany
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Moritz J Reike
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Harald Krentel
- Department of Obstetrics and Gynecology, Bethesda Hospital, Duisburg, Germany
| | - Katja Engellandt
- Department of Obstetrics and Gynecology, Bethesda Hospital, Duisburg, Germany
| | - Sven Schiermeier
- Department of Obstetrics and Gynecology, Marien-Hospital, University Witten-Herdecke, Witten, Germany
| | - Valentin Menke
- Department of Obstetrics and Gynecology, St. Anna Hospital, Herne, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany.
| |
Collapse
|
2
|
Zhou R, Zhou J, Deng S, Zhu Y, Muhuitijiang B, Wu J, Tan W. Developing and experimental validating a B cell exhaustion-related gene signature to assess prognosis and immunotherapeutic response in bladder cancer. Gene 2024; 927:148634. [PMID: 38848880 DOI: 10.1016/j.gene.2024.148634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND B cell exhaustion (BEX) refers to the impairment of normal B cell functions and decreased proliferation capability. However, the prognostic value of BEX-related genes in bladder cancer (BLCA) remains unclear. METHODS BLCA cases from TCGA were used for training, while GSE5287, GSE13507, GSE31684, and GSE32894 cohorts from GEO were used for external validation. BEX-related genes were identified through literature retrieval, unsupervised clustering, and genomic difference detection. Gene pairing, LASSO, random forest, and Cox regression were employed to construct a predictive model. B cell samples from scRNAseqDB, GSE111636, and IMvigor210 were utilized to explore immunoprofiles and the predictive ability of the model in immunotherapeutic response. Additionally, 21 pairs of BLCA and paracarcinoma samples from Nanfang Hospital were used to re-confirm our findings through RT-qPCR, immunofluorescence, and flow cytometry. RESULTS 39 BEX-related genes were identified. A 4-gene-pair signature was constructed and served as a reliable prognostic predictor across multiple datasets (pooled HR = 2.32; 95 % CI = 1.81-2.98). The signature reflected the BEX statuses of B cells (FDR < 0.05) and showed promise in evaluating immunotherapeutic sensitivity (P < 0.001). In the local cohort, CD52, TUBB6, and CAV1 were down-regulated in BLCA tissues, while TGFBI, UBE2L6, TINAGL1, and IL32 were up-regulated (all P < 0.05). Furthermore, the infiltration levels of CD19 + CD52 + and CD19 + TUBB6 + B cells in paracarcinoma samples were higher than those in BLCA samples (all P < 0.05). CONCLUSION A BEX-related gene signature was developed to predict prognosis and immunotherapeutic sensitivity in BLCA, providing valuable guidance for personalized treatment.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Jiaxu Wu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
3
|
Wang L, Huang C, Lin W, Zhou Z, Li J, Chen M, Zhang L, Ye Y. EIF3B affects the invasion and metastasis of hepatocellular carcinoma cells via the TGFBI/MAPK/ERK pathway. Ann Hepatol 2024; 30:101564. [PMID: 39276983 DOI: 10.1016/j.aohep.2024.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES To study the effect of eukaryotic initiation factor 3B (EIF3B) on the invasion and migration of hepatocellular carcinoma (HCC) and its potential mechanism. MATERIALS AND METHODS The clinical significance of EIF3B expression was studied with The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interaction Analysis datasets. Immunohistochemical staining and western blotting were used to examine EIF3B expression in cell lines and tissues from HCC patients. The scratch assay and transwell assay were used to measure the invasion and metastasis of different HCC cell lines in vitro. The molecular mechanism of EIF3B was determined using RNA-seq and identification of dysregulated signaling pathways. Western blotting was used to verify the alterations of EIF3B signaling functioned in the promotion of HCC progression. RESULTS Elevated expression of EIF3B in HCC correlated significantly with aggressive clinicopathologic characteristics, including advanced tumor grade and poor prognosis. Studies with cultured cells indicated that EIF3B knockdown inhibited HCC cell invasion and metastasis by depressing the epithelial-mesenchymal transition (EMT). EIF3B also activated the TGFBI/MAPK/ERK signaling pathway by increasing the levels of pMEK and pERK. CONCLUSIONS Our results indicate that EIF3B functions as an oncogene in HCC that accelerates cell invasion, metastasis, and the EMT by stimulation of the TGFBI/MAPK/ERK signaling pathway. EIF3B is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Mingshui Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Lingyu Zhang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014,China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China.
| |
Collapse
|
4
|
Huang H, Tang Q, Li S, Qin Y, Zhu G. TGFBI: A novel therapeutic target for cancer. Int Immunopharmacol 2024; 134:112180. [PMID: 38733822 DOI: 10.1016/j.intimp.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
TGFBI, an extracellular matrix protein induced by transforming growth factor β, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
6
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
7
|
Fonseca ÁYG, González-Giraldo Y, Santos JG, Aristizábal-Pachón AF. The hsa-miR-516a-5p and hsa-miR-516b-5p microRNAs reduce the migration and invasion on T98G glioblastoma cell line. Cancer Genet 2023; 270-271:12-21. [PMID: 36410106 DOI: 10.1016/j.cancergen.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.
Collapse
Affiliation(s)
- Ángela Y García Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Jannet Gonzalez Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Andrés F Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| |
Collapse
|
8
|
Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Krüger M, Cerwenka A, Platten M, Goerdt S, Géraud C. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Circulation 2022; 146:1783-1799. [PMID: 36325910 DOI: 10.1161/circulationaha.121.058615] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, β-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Calin-Petru Manta
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mirco Friedrich
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Hendrik Nolte
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Biology of Ageing, Cologne, Germany (H.N.)
| | - Monica Adrian
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christof Kirkamm
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christian David Schmid
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Yannick Xi
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ana Stojanovic
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Carolina de la Torre
- Centre for Medical Research (ZMF) (C.d.l.T.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Seddik Hammad
- Department of Medicine II (S.H.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Marcus Krüger
- Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Platten
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
9
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
10
|
Zhang S, Zhang W, Wu B, Xia L, Li L, Jin K, Zou Y, Sun C. Hub gene target of glioblastoma: LOX, SERPINH1 and TGFBI. Medicine (Baltimore) 2022; 101:e31418. [PMID: 36397358 PMCID: PMC9666166 DOI: 10.1097/md.0000000000031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor. The long-term prognosis of the patients is poor. Therefore, it is of important clinical value to further explore the pathogenesis and look for molecular markers for early diagnosis and targeted treatment. Two expression profiling datasets [GSE50161 (GPL570 platform), GSE116520 (GPL10558 platform)] were respectively downloaded from the gene expression omnibus database. Volcano diagrams show the Differently expressed genes (DEGs) of GSE50161 and GSE116520. A Venn diagram revealed 467 common DEGs between the 2 datasets. Lysyl oxidase (LOX), serpin family H member 1 (SERPINH1) and transforming growth factor beta induced (TGFBI) were negatively correlated with the overall survival rate in patients with GBM. The hub genes are high in GBM tumor tissues. The relative expression levels of LOX, SERPINH1 and TGFBI were significantly higher in GBM samples, compared with the normal brain tissues groups. Bioinformatics technology could be a useful tool to predict progression of GBM and to explore the mechanism of GBM.LOX, SERPINH1 and TGFBI may be involved in the mechanism of the occurrence and development of GBM, and may be used as molecular targets for early diagnosis and specific treatment. DEGs identified using GEO2R. Functional annotation of DEGs using Kyoto Encyclopedia of Genes and Genomes and gene body pathway enrichment analysis. Construction of a protein-protein interaction network. The pathway and process enrichment analysis of the hub genes were performed by Metascape. Survival analysis was performed in gene expression profiling interactive analysis. Real-time fluorescent quantitative polymerase chain reaction assay was performed to verify. The animal model was established for western blot test analysis.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Weiwei Zhang
- Department of Operating Theater, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Bin Wu
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Liang Xia
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Liwen Li
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Kai Jin
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Yangfan Zou
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Caixing Sun
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
- * Correspondence: Caixing Sun, Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China (e-mail: )
| |
Collapse
|
11
|
Hou CP, Tsui KH, Chen ST, Chang KS, Sung HC, Hsu SY, Lin YH, Feng TH, Juang HH. The Upregulation of Caffeic Acid Phenethyl Ester on Growth Differentiation Factor 15 Inhibits Transforming Growth Factor β/Smad Signaling in Bladder Carcinoma Cells. Biomedicines 2022; 10:biomedicines10071625. [PMID: 35884930 PMCID: PMC9312961 DOI: 10.3390/biomedicines10071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is known as a TGFβ-like cytokine acting on the TGFβ receptor to modulate target genes. GDF15 is regarded as a tumor suppressor gene in the human bladder and the caffeic acid phenethyl ester (CAPE) induces GDF15 expression to inhibit the tumor growth in vitro and in vivo. However, the interactions among GDF15, CAPE, and TGFβ/Smads signaling in the human bladder carcinoma cells remain unexplored. Results revealed that TGFβ downregulated the expression of GDF15 via the activation of Smad 2/3 and Smad 1/5. Induction of GDF15 on its downstream genes, NDRG1 and maspin, is dependent on the TGFβ/Smad pathways. Moreover, TGFβ blocked the CAPE-inducing expressions of GDF15, maspin, and NDRG1. Pretreatment of TGF receptor kinase inhibitor not only blocked the activation of TGFβ but also attenuated the activation of GDF15 on the expressions of maspin and NDRG1. The CAPE treatment attenuated the activation of TGFβ on cell proliferation and invasion. Our findings indicate that TGFβ downregulated the expressions of GDF15, maspin, and NDRG1 via TGFβ/Smad signaling. Whereas, CAPE acts as an antagonist on TGFβ/Smad signaling to block the effect of TGFβ on the GDF15 expression and cell proliferation and invasion in bladder carcinoma cells.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan;
- TMU Research Center of Urology and Kindey, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kang-Shuo Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
12
|
Yang F, Lian M, Ma H, Feng L, Shen X, Chen J, Fang J. Identification of key genes associated with papillary thyroid microcarcinoma characteristics by integrating transcriptome sequencing and weighted gene co-expression network analysis. Gene 2022; 811:146086. [PMID: 34856364 DOI: 10.1016/j.gene.2021.146086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Papillary thyroid microcarcinoma (PTMC) is the most prevalent histological type of thyroid carcinoma. Despite the overall favorable prognosis of PTMC, some cases exhibit aggressive phenotypes. The identification of robust biomarkers may improve early PTMC diagnosis. In this study, we integrated high-throughput transcriptome sequencing, bioinformatic analyses and experimental validation to identify key genes associated with the malignant characteristics of PTMC. METHODS Total RNA was extracted from 24 PTMC samples and 7 non-malignant thyroid tissue samples, followed by RNA sequencing. The differentially expressed genes (DEGs) were identified and used to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed, and protein-protein interaction networks were constructed. Key modules and hub genes showing a strong correlation with the malignant characteristics of PTMC were identified and validated. RESULTS The green-yellow and turquoise modules generated by WGCNA were strongly associated with the malignant characteristics of PTMC. Functional enrichment analysis revealed that genes in the green-yellow module participated in cell motility and metabolism, whereas those in the turquoise module participated in several oncogenic biological processes. Nine real hub genes (FHL1, NDRG2, NEXN, SYNM, COL1A1, FN1, LAMC2, POSTN, and TGFBI) were identified and validated at the transcriptional and translational levels. Our preliminary results indicated their diagnostic potentials in PTMC. CONCLUSIONS In this study, we identified key co-expression modules and nine malignancy-related genes with potential diagnostic value in PTMC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China, 100029.
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730
| | - Jiaming Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730; Department of Thyroid Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 100730.
| |
Collapse
|
13
|
MiR-766-3p Suppresses Malignant Behaviors and Stimulates Apoptosis of Colon Cancer Cells via Targeting TGFBI. Can J Gastroenterol Hepatol 2022; 2022:7234704. [PMID: 35083181 PMCID: PMC8786513 DOI: 10.1155/2022/7234704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can affect the progression of colon cancer cells. A variety of miRNAs, especially miR-766-3p, are proved to be abnormally expressed in colon cancer, but the molecular mechanism of miR-766-3p in this cancer has not yet been fully defined. METHODS Differentially expressed genes in the TCGA-COAD dataset were searched through bioinformatics analysis. MiR-766-3p and TGFBI mRNA levels were measured by qRT-PCR. TGFBI protein expression was measured via Western blot. Targeting relation between miR-766-3p and TGFBI was investigated by dual-luciferase reporter gene assay. Cell proliferation, invasion migration, and apoptosis were detected by cell functional assays. RESULTS MiR-766-3p was less expressed, while TGFBI was conspicuously highly expressed in colon cancer. MiR-766-3p high expression suppressed cell malignant behaviors and induced cell apoptosis in colon cancer. MiR-766-3p had a targeting relation with TGFBI verified by dual-luciferase assay. The cancer-suppressive impact of miR-766-3p overexpression was attenuated by overexpressing TGFBI. CONCLUSIONS MiR-766-3p/TGFBI axis suppressed malignant behaviors and facilitated apoptosis of colon cancer cells. MiR-766-3p may be an underlying target for colon cancer.
Collapse
|
14
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
15
|
Köhler CU, Walter M, Lang K, Plöttner S, Roghmann F, Noldus J, Tannapfel A, Tam YC, Käfferlein HU, Brüning T. In-Vitro Identification and In-Vivo Confirmation of DNA Methylation Biomarkers for Urothelial Cancer. Biomedicines 2020; 8:biomedicines8080233. [PMID: 32707764 PMCID: PMC7459535 DOI: 10.3390/biomedicines8080233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
We identified DNA methylation targets specific for urothelial cancer (UC) by genome-wide methylation difference analysis of human urothelial (RT4, J82, 5637), prostate (LNCAP, DU-145, PC3) and renal (RCC-KP, CAKI-2, CAL-54) cancer cell lines with their respective primary epithelial cells. A large overlap of differentially methylated targets between all organs was observed and 40 Cytosine-phosphate-Guanine motifs (CpGs) were only specific for UC cells. Of those sites, two also showed high methylation differences (≥47%) in vivo when we further compared our data to those previously obtained in our array-based analyses of urine samples in 12 UC patients and 12 controls. Using mass spectrometry, we finally assessed seven CpG sites in this “bladder-specific” region of interest in urine samples of patients with urothelial (n = 293), prostate (n = 75) and renal (n = 23) cancer, and 143 controls. DNA methylation was significantly increased in UC compared to non-UC individuals. The differences were more pronounced for males rather than females. Male UC cases could be distinguished from non-UC individuals with >30% sensitivity at 95% specificity (Area under the curve (AUC) 0.85). In summary, methylation sites highly specific in UC cell lines were also specific in urine samples of UC patients showing that in-vitro data can be successfully used to identify biomarker candidates of in-vivo relevance.
Collapse
Affiliation(s)
- Christina U. Köhler
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Michael Walter
- C.ATG Core Facility for NGS and Microarrays, University of Tübingen, Calwerstr. 7, 72076 Tübingen, Germany;
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
- Correspondence: ; Tel.: +49-30-13001-4401
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| |
Collapse
|