1
|
Lu Y, Yang S, Chen W, Xie H, Xu C. Advances in Migratory Plant Endoparasitic Nematode Effectors. Int J Mol Sci 2024; 25:6435. [PMID: 38928141 PMCID: PMC11203926 DOI: 10.3390/ijms25126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Unlike sedentary plant-parasitic nematodes, migratory plant endoparasitic nematodes (MPENs) are unable to establish permanent feeding sites, and all developmental stages (except eggs) can invade and feed on plant tissues and can be easily overlooked because of the unspecific symptoms. They cause numerous economic losses in agriculture, forestry, and horticulture. In order to understand the pathogenetic mechanism of MPENs, here we describe research on functions and host targets focused on currently identified effectors from six MPENs, namely Radopholus similis, Pratylenchus spp., Ditylenchus destructor, Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Hirschmanniella oryzae. This information will provide valuable insights into understanding MPEN effectors and for future fostering advancements in plant protection.
Collapse
Affiliation(s)
| | | | | | | | - Chunling Xu
- Research Center of Nematodes of Plant Quarantine, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang L, Qin C, Guo Q, Han Y, Du G, Li R. Transcriptome Study of Bursaphelenchus xylophilus Treated with Fomepizole Reveals a Serine/Threonine-Protein Phosphatase Gene that Is Substantially Linked with Vitality and Pathogenicity. PHYTOPATHOLOGY 2024; 114:630-640. [PMID: 38457135 DOI: 10.1094/phyto-04-23-0113-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Bursaphelenchus xylophilus, the pine wood nematode (PWN), is the causal agent of pine wilt disease (PWD), which causes enormous economic loss annually. According to our previous research, fomepizole, as a selective inhibitor of PWN alcohol dehydrogenase (ADH), has the potential to be a preferable lead compound for developing novel nematicides. However, the underlying molecular mechanism is still unclear. The result of molecular docking showed that the stronger interactions between fomepizole and PWN ADH at the active site of ADH were attributed to hydrogen bonds. Low-dose fomepizole had a substantial negative impact on the egg hatchability, development, oviposition, and lifespan of PWN. Transcriptome analysis indicated that 2,124 upregulated genes and 490 downregulated genes in fomepizole-treated PWN were obtained. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that fomepizole could be involved in controlling PWN vitality mainly by regulating key signaling pathways, such as the ribosome, hippo signaling pathway, and lysosome. Remarkably, the results of RNA interference indicated that the downregulated serine/threonine-protein phosphatase gene (stpp) could reduce the egg hatchability, development, oviposition, and lifespan of PWN, which was closely similar to the consequences of nematodes with low-dose fomepizole treatment. In addition, the silencing of stpp resulted in weakness of PWN pathogenicity, which indicated that stpp could be a potential drug target to control PWN.
Collapse
Affiliation(s)
- Linsong Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Chenglei Qin
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Yi Han
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
3
|
You J, Chen J, Hu Y, Wang S, Wang J, Sun T, Shen Z. Identification of cytochrome P450 gene family and functional analysis of HgCYP33E1 from Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2023; 14:1219702. [PMID: 37692428 PMCID: PMC10485556 DOI: 10.3389/fpls.2023.1219702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The cytochrome P450 (CYP) genes of nematode play a crucial role in the metabolic detoxification of xenobiotics including pesticides. Heterodera glycines, also known as the soybean cyst nematode, is a sedentary endoparasite that infests plant roots, causing high annual economic losses in soybean production regions globally. In this study, we identified 36 CYP genes at a genome-wide level of the H. glycines isolate TN10 using all CYPs from Caenorhabditis elegans as queries. Subsequently, a full-length cDNA of HgCYP33E1 which was significantly up-regulated by the conventional nematicide abamectin was initially cloned from H. glycines. It presented significantly higher expressions in the second-stage juvenile (J2) compared to other parasitic stages of H. glycines. qRT-PCR analysis suggested that the expression of HgCYP33E1 was also xenobiotically induced by soybean root exudate and the metabolites of biocontrol agents. Using RNA interference (RNAi), we investigated the function of HgCYP33E1 in H. glycines parasitism and nematicide selectivity. Compared to the control and dsGFP-treated group, silencing of HgCYP33E1 did not affect the J2 behaviors and the early invasion ability, while it decreased the number of J4s in soybean roots after 18-d inoculation with the dsHgCYP33E1-treated nematodes. In addition, knockdown of HgCYP33E1 in H. glycines resulted in an increase in J2 mortality after 24-h incubation with abamectin compared to the GFP dsRNA-soaked and the control group. These findings revealed the potential role of HgCYP33E1 in the xenobiotic detoxification pathway of H. glycines. Moreover, our data also provided valuable gene information for studying the functions of the CYP family in H. glycines host adaption.
Collapse
Affiliation(s)
- Jia You
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Siru Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jianli Wang
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| | - Tao Sun
- Chongqing Customs Technology Center, Chongqing, China
| | - Zhongbao Shen
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Chen J, Hao X, Tan R, Li Y, Wang B, Pan J, Ma W, Ma L. Functional Study on Cytochrome P450 in Response to L(-)-Carvone Stress in Bursaphelenchus xylophilus. Genes (Basel) 2022; 13:1956. [PMID: 36360193 PMCID: PMC9689654 DOI: 10.3390/genes13111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Bursaphelenchus xylophilus (PWN) causes pine wilt disease (PWD), which is one of the most devastating pine diseases worldwide. Cytochrome P450 (CYP) catalyzes the biosynthetic metabolism of terpenoids and plays an important role in the modification of secondary metabolites in all living organisms. We investigated the molecular characteristics and biological functions of Bx-cyp29A3 in B. xylophilus. The bioinformatics analysis results indicated that Bx-cyp29A3 has a transmembrane domain and could dock with L(-)-carvone. The gene expression pattern indicated that Bx-cyp29A3 was expressed in 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL L(-)-carvone solutions. The Bx-cyp29A3 expression increased in a dose-dependent manner and peaked at 24 h of exposure when the L(-)-carvone solution concentration was 0.8 mg/mL. However, the gene expression peaked at 0.6 mg/mL after 36 h. Furthermore, RNA interference (RNAi) indicated that Bx-cyp29A3 played an essential role in the response to L(-)-carvone. The mortality rates of the Bx-cyp29A3 knockdown groups were higher than those of the control groups in the 0.4, 0.6, 0.8, and 1.0 mg/mL carvone solutions after 24 h of exposure or 36 h of exposure. In summary, bioinformatics provided the structural characteristics and conserved sequence properties of Bx-cyp29A3 and its encoded protein, which provided a target gene for the study of the P450 family of B. xylophilus. Gene silencing experiments clarified the function of Bx-cyp29A3 in the immune defense of B. xylophilus. This study provides a basis for the screening of new molecular targets for the prevention and management of B. xylophilus.
Collapse
Affiliation(s)
- Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Plant Science, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruina Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Zhejiang University, Hangzhou 310028, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Wang M, Du G, Fang J, Wang L, Guo Q, Zhang T, Li R. UGT440A1 Is Associated With Motility, Reproduction, and Pathogenicity of the Plant-Parasitic Nematode Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2022; 13:862594. [PMID: 35712574 PMCID: PMC9194688 DOI: 10.3389/fpls.2022.862594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is considered a major threat to pine forests worldwide. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic compounds with sugars and play crucial roles in the detoxification and homeostatic processes in all living organisms. We investigated the molecular characteristics and biological functions of the gene UGT440A1 that encodes UGTs in B. xylophilus. The in situ hybridization results indicated that UGT440A1 is expressed in all developmental stages of B. xylophilus, particularly in the head, intestine, and hypodermis of the second-stage of juveniles (J2), third-stage of juveniles (J3) and fourth-stage of juveniles (J4) females and in almost the whole body of J4 males and adults. Recombinant UGT440A1 was observed mainly in the inclusion bodies, and the enzyme activity assay revealed that UGT440A1 could catalyze the glycosylation reaction of two types of flavonols (kaempferol and quercetin). RNA interference (RNAi) of UGT440A1 suppressed motility, feeding, and reproduction of B. xylophilus. Furthermore, UGT440A1 knockdown caused a delay in the development of PWD symptoms in the pine seedlings inoculated with the nematodes. These results suggest that UGT440A1 is involved in the pathogenic process of B. xylophilus and the information may facilitate a better understanding of the molecular mechanism of PWD.
Collapse
Affiliation(s)
- Min Wang
- Medical College, Qingdao University, Qingdao, China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Junna Fang
- Qingdao JiMo People’s Hospital, Qingdao, China
| | - Linsong Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
8
|
Selection and Validation of Reliable Reference Genes for qRT-PCR Normalization of Bursaphelenchus xylophilus from Different Temperature Conditions and Developmental Stages. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a powerful technique for studying gene expression. The key to quantitative accuracy depends on the stability of the reference genes used for data normalization under different experimental conditions. Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causal agent of the devastating pine wilt disease (PWD). Extensive and prompt research is needed to understand the molecular mechanism of PWD, but identification of the reference PWN genes for standardized qRT-PCR has not been reported yet. We have analyzed eight candidate reference genes of PWN across different temperature conditions and developmental stages. Delta Ct method, GeNorm, NormFinder, BestKeeper, and RefFinder algorithms were used to evaluate the stability of expression of these genes. Finally, we use arginine kinase gene (AK) in different temperatures and heat shock protein 90 (HSP90) in different developmental stages to confirm the stability of these genes. UBCE and EF1γ were most stable across different temperature treatments, whereas EF1γ and Actin were most stable across different developmental stages. In general, these results indicate that EF1γ is the most stable gene for qRT-PCR under different conditions. The systematic analysis of qRT-PCR reference gene selection will be helpful for future functional analysis and exploration of B. xylophilus genetic resources.
Collapse
|
9
|
Wang M, Wang LS, Fang JN, Du GC, Zhang TT, Li RG. Transcriptomic Profiling of Bursaphelenchus xylophilus Reveals Differentially Expressed Genes in Response to Ethanol. Mol Biochem Parasitol 2022; 248:111460. [DOI: 10.1016/j.molbiopara.2022.111460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/18/2023]
|
10
|
Kirino H, Konagaya KI, Shinya R. Novel Functional Analysis for Pathogenic Proteins of Bursaphelenchus xylophilus in Pine Seed Embryos Using a Virus Vector. FRONTIERS IN PLANT SCIENCE 2022; 13:872076. [PMID: 35548316 PMCID: PMC9083003 DOI: 10.3389/fpls.2022.872076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 05/17/2023]
Abstract
Pine wilt disease (PWD), which is caused by the pine wood nematode Bursaphelenchus xylophilus, is among the most serious tree diseases worldwide. PWD is thought to be initiated by sequential excessive hypersensitive responses to B. xylophilus. Previous studies have reported candidate pathogenic molecules inducing hypersensitive responses in pine trees susceptible to B. xylophilus. The functions of some of these molecules have been analyzed in model plants using transient overexpression; however, whether they can induce hypersensitive responses in natural host pines remains unclear due to the lack of a suitable functional analysis method. In this study, we established a novel functional analysis method for susceptible black pine (Pinus thunbergii) seed embryos using transient overexpression by the Apple latent spherical virus vector and investigated five secreted proteins of B. xylophilus causing cell death in tobacco to determine whether they induce hypersensitive responses in pine. We found that three of five molecules induced significantly higher expression in pathogenesis-related genes ( p < 0.05), indicating hypersensitive response in pine seed embryos compared with mock and green fluorescence protein controls. This result suggests that tobacco-based screening may detect false positives. This study is the first to analyze the function of pathogenic candidate molecules of B. xylophilus in natural host pines using exogenous gene expression, which is anticipated to be a powerful tool for investigating the PWD mechanism.
Collapse
Affiliation(s)
- Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ken-ichi Konagaya
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
- *Correspondence: Ryoji Shinya,
| |
Collapse
|
11
|
Kochetov AV, Gavrilenko TA, Afanasenko OS. [New genetic tools for plant defense against parasitic nematodes]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:337-343. [PMID: 34901730 PMCID: PMC8627880 DOI: 10.18699/vj21.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Нематоды относятся к числу значимых вредителей сельскохозяйственных растений. В обзоре
рассмотрены последние данные о молекулярных механизмах устойчивости растений к цистообразующим
и галловым нематодам, среди которых одни из наиболее вредоносных видов: Globodera rostochiensis, G. pallida, Heterodera schachtii, Meloidogyne chitwoodi и M. incognita. Например, золотистая картофельная нематода
G. rostochiensis, зарегистрированная в 61 субъекте РФ на общей площади 1.8 млн га, способна приводить к потере
от 19 до 90 % урожая картофеля. Биологические особенности нематод затрудняют разработку агротехнических
способов борьбы с ними: цисты G. rostochiensis сохраняют жизнеспособность в почве в течение многих лет, нематициды токсичны или малоэффективны, поэтому предпочтительным методом борьбы с ними является интрогрессия генов устойчивости от родственных культурных и дикорастущих видов. Стратегия жизненного цикла
цистообразующих и галловых нематод основана на способности личинок проникать в корни восприимчивых
видов растений, репрограммировать клетки растения-хозяина, формирующие гигантские клетки или синцитии
в качестве питающих структур, а также ингибировать иммунный ответ. Молекулярные механизмы, лежащие в
основе такого взаимодействия в системе «патоген–хозяин», вызывают значительный интерес как с точки зрения
управления морфогенезом растений, так и в аспекте разработки безопасных и эффективных способов борьбы с
паразитическими нематодами. В обзоре рассмотрены данные об эффекторах, с помощью которых разные виды
нематод контролируют иммунный ответ растения-хозяина, а также гены устойчивости (R-гены) и некоторые
молекулярные механизмы, прерывающие формирование питающих структур и развитие паразита. Приведены
новые данные о способах генетического контроля, основанных на одном из активно обсуждаемых в последнее время варианте механизма РНК-интерференции – HIGS (host induced gene silencing), представляющем собой
адресное выключение экспрессии гена-мишени в клетках личинки нематоды с помощью специфических двуцепочечных РНК, синтезирующихся в клетках растения-хозяина. Индукция РНК-интерференции в клетках растений
приводит к появлению молекул-медиаторов, способных инициировать аналогичный процесс в клетках фитофагов, взаимодействующих с растением, в том числе у личинок нематод. Описаны случаи, в которых такое адресное выключение экспрессии генов-мишеней приводило к нарушениям развития личинок и высокому уровню
защиты сельскохозяйственных растений от наиболее опасных видов нематод.
Collapse
Affiliation(s)
- A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T A Gavrilenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - O S Afanasenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
12
|
Yin Y, Wang C, Xiao D, Liang Y, Wang Y. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:786328. [PMID: 34917116 PMCID: PMC8669725 DOI: 10.3389/fpls.2021.786328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits-including insect, disease, and herbicide resistance-were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.
Collapse
Affiliation(s)
- Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Chun Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Dandan Xiao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanting Liang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Han Y, Han Y, Du G, Zhang T, Guo Q, Yang H, Li R, Xu Y. Physiological effect of colloidal carbon quantum dots on Bursaphelenchus xylophilus. RSC Adv 2021; 11:6212-6220. [PMID: 35423135 PMCID: PMC8694832 DOI: 10.1039/d0ra10144c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bursaphelenchus xylophilus (B. xylophilus) is a dangerous plant pest which could result in Pine Wild Disease (PWD).
Collapse
Affiliation(s)
- Yi Han
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yaqian Han
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Guicai Du
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Tingting Zhang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Qunqun Guo
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Hong Yang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Ronggui Li
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yuanhong Xu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
14
|
Kooliyottil R, Rao Gadhachanda K, Solo N, Dandurand LM. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. FRONTIERS IN PLANT SCIENCE 2020; 11:582424. [PMID: 33329645 PMCID: PMC7715011 DOI: 10.3389/fpls.2020.582424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Affiliation(s)
- Rinu Kooliyottil
- Citrus Budwood Registration Program, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, La Crosse, FL, United States
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Nejra Solo
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|