1
|
Tomita T, Nakajima Y, Ohmiya Y, Miyazaki K. Novel three-dimensional live skin-like in vitro composite for bioluminescence reporter gene assay. FEBS J 2024; 291:4619-4632. [PMID: 39148322 DOI: 10.1111/febs.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
We genetically manipulated HaCaT cells, a spontaneously immortalised normal keratinocyte cell line, to stably express two different coloured luciferase reporter genes, driven by interleukin 8 (IL-8) and ubiquitin-C (UBC) promoters, respectively. Subsequently, we generated a three-dimensional (3D) skin-like in vitro composite (SLIC) utilising these cells, with the objective of monitoring bioluminescence emitted from the SLIC. This SLIC was generated on non-woven silica fibre membranes in differentiation medium. Immunohistochemical analyses of skin differentiation markers in the SLIC revealed the expression of keratins 2 and 10, filaggrin, and involucrin, indicating mature skin characteristics. This engineered SLIC was employed for real-time bioluminescence monitoring, allowing the assessment of time- and dose-dependent responses to UV stress, as well as to hydrophilic and hydrophobic chemical loads. Notably, evaluation of responses to hydrophobic substances has been challenging with conventional 2D cell culture methods, suggesting the need for a new approach, which this technology could address. Our observations suggest that engineered SLIC with constitutively expressing reporters driven by selected promoters which are tailored to specific objectives, significantly facilitates assays exploring the physiological functions of skin cells based on genetic response mechanisms. It also highlights new avenues for evaluating the physiological impacts of various compounds designed for topical application to human skin.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- Osaka Institute of Technology (OIT), Omiya, Japan
| | - Koyomi Miyazaki
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
2
|
Anish RJ, Nair A, Saraswathy V, Kalpana VNS, Shyma RL. In silico, anti-inflammatory and acute toxicological evaluation of an indigenous medicinal plant Pterospermum rubiginosum using Sprague-Dawley rats. Lab Anim Res 2024; 40:2. [PMID: 38326913 PMCID: PMC10848399 DOI: 10.1186/s42826-024-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Pterospermum rubiginosum has been traditionally used by the tribal inhabitants of Southern India for treating bone fractures and as a local anti-inflammatory agent; however, experimental evidence to support this traditional usage is lacking. The present study aimed to investigate the phytochemical characterization, in silico and in vitro anti-inflammatory evaluation, followed by in vivo toxicological screening of P. rubiginosum methanolic bark extract (PRME). RESULTS The LCMS evaluation revealed the presence of 80 significant peaks; nearly 50 molecules were identified using the LCMS database. In silico analysis showed notable interactions with inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6). In vitro gene expression study supported the docking results with significant down-regulation of iNOS, IL-6, and IL-10. PRME was administered orally to the SD rats and was found to be non-toxic up to 1000 mg/kg body weight for 14 days. The antioxidant enzymes catalase and sodium dismutase exhibited an increased value in PRME-administered groups, possibly due to the diverse phytochemical combinations in bark extract. CONCLUSIONS PRME administration significantly downregulated the gene expression of inflammatory markers, such as iNOS, IL-6, and IL-10. The molecular docking analysis of iNOS and IL-6 supports the in vitro study. In vivo toxicological study of PRME in SD rats was found to be non-toxic up to a concentration of 1000 mg/kg body weight for 14 days.
Collapse
Affiliation(s)
- Rajamohanan Jalaja Anish
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Aswathy Nair
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
- Kerala State Palmyrah Products Development and Workers' Welfare Corporation Limited, Trivandrum, India
| | - V Saraswathy
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Velappan Nair S Kalpana
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Rajendran L Shyma
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| |
Collapse
|
3
|
Niwa K, Kubota H, Enomoto T, Ichino Y, Ohmiya Y. Quantitative Analysis of Bioluminescence Optical Signal. BIOSENSORS 2023; 13:223. [PMID: 36831989 PMCID: PMC9953788 DOI: 10.3390/bios13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Bioluminescence is light emission based on the luciferin-luciferase enzymatic reaction in living organisms. Optical signals from bioluminescence (BL) reactions are available for bioanalysis and bioreporters for gene expression, in vitro, in vivo, and ex vivo bioimaging, immunoassay, and other applications. Although there are numerous bioanalysis methods based on BL signal measurements, the BL signal is measured as a relative value, and not as an absolute value. Recently, some approaches have been established to completely quantify the BL signal, resulting in, for instance, the redetermination of the quantum yield of the BL reaction and counting the photon number of the BL signal at the single-cell level. Reliable and reproducible understanding of biological events in the bioanalysis and bioreporter fields can be achieved by means of standardized absolute optical signal measurements, which is described in an International Organization for Standardization (ISO) document.
Collapse
Affiliation(s)
- Kazuki Niwa
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | | | | | - Yoshiro Ichino
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
- Osaka Institute of Technology (OIT), Osaka 535-8585, Japan
| |
Collapse
|
4
|
Tomita T, Kawano Y, Kassai M, Onda H, Nakajima Y, Miyazaki K. Hydroxy-β-sanshool isolated from Zanthoxylum piperitum (Japanese pepper) shortens the period of the circadian clock. Food Funct 2022; 13:9407-9418. [PMID: 35960176 DOI: 10.1039/d2fo01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We showed that an ethanol extract from Zanthoxylum piperitum can shorten the circadian rhythm at the cellular level and that this activity was due to hydroxy-β-sanshool, a secondary metabolite in this plant. An ethanol extract of Z. piperitum was repeatedly fractionated using solid phase extraction and reverse-phase HPLC, then the circadian rhythms of cells to which the fractions were loaded were monitored using real-time reporter gene assays. We purified one HPLC peak and identified it as hydroxy-β-sanshool using liquid chromatography (LC)-precision-mass spectrometry (MS). This compound shortened the period of Bmal1 and Per2 at the cellular level. Incubation cells for 24 h with hydroxy-β-sanshool resulted in upregulated Per2 promoter activity. Hydroxy-β-sanshool also dose-dependently upregulated expression of the clock genes Bmal1, Per1, Per2 and Cry1 and the clock-controlled oxidative stress responsive genes Gpx1and Sod2.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | - Yasuhiro Kawano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | - Masahiro Kassai
- S&B Foods Inc., #605 MITSUI LINK-Lab Shinkiba1 Shinkiba 2-3-8, Koto-ku, Tokyo 136-0082, Japan
| | - Hiroyuki Onda
- S&B Foods Inc., #605 MITSUI LINK-Lab Shinkiba1 Shinkiba 2-3-8, Koto-ku, Tokyo 136-0082, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hayashicho 2217-14, Takamatsu, 761-0395, Japan
| | - Koyomi Miyazaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| |
Collapse
|
5
|
Saiki P, Yoshihara M, Kawano Y, Miyazaki H, Miyazaki K. Anti-Inflammatory Effects of Heliangin from Jerusalem Artichoke (Helianthus tuberosus) Leaves Might Prevent Atherosclerosis. Biomolecules 2022; 12:biom12010091. [PMID: 35053238 PMCID: PMC8774036 DOI: 10.3390/biom12010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is considered the major cause of cardiovascular and cerebrovascular diseases, which are the leading causes of death worldwide. Excessive nitric oxide production and inflammation result in dysfunctional vascular endothelial cells, which are critically involved in the initiation and progression of atherosclerosis. The present study aimed to identify a bioactive compound from Jerusalem artichoke leaves with anti-inflammatory activity that might prevent atherosclerosis. We isolated bioactive heliangin that inhibited NO production in LPS-induced macrophage-like RAW 264.7 cells. Heliangin suppressed ICAM-1, VCAM-1, E-selectin, and MCP-1 expression, as well as NF-κB and IκBα phosphorylation, in vascular endothelial cells stimulated with TNF-α. These results suggested that heliangin suppresses inflammation by inhibiting excessive NO production in macrophages and the expression of the factors leading to the development of atherosclerosis via the NF-κB signaling pathway in vascular endothelial cells. Therefore, heliangin in Jerusalem artichoke leaves could function in the prevention of atherosclerosis that is associated with heart attacks and strokes.
Collapse
Affiliation(s)
- Papawee Saiki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
- Correspondence: ; Tel.: +81-29-861-4304
| | - Mizuki Yoshihara
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; (M.Y.); (H.M.)
| | - Yasuhiro Kawano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
| | - Hitoshi Miyazaki
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; (M.Y.); (H.M.)
| | - Koyomi Miyazaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
| |
Collapse
|
6
|
Liu X, Yao S, Bi J, Zheng D, Wang P. Protective effects and regulatory mechanisms of melatonin in a neonatal mouse model of LPS-induced inflammation. Neurosci Lett 2022; 772:136483. [DOI: 10.1016/j.neulet.2022.136483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
|
7
|
Long C, Yang Y, Wang Y, Zhang X, Zhang L, Huang S, Yang D, Qiao X, Yang Y, Guo Y. Role of Glutamine-Glutamate/GABA cycle and potential target GLUD2 in alleviation of rheumatoid arthritis by Tripterygium hypoglaucum (levl.) Hutch based on metabolomics and molecular pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114561. [PMID: 34454056 DOI: 10.1016/j.jep.2021.114561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium hypoglaucum (levl.) Hutch (Celastraceae) (THH), as a traditional Chinese medicine, was clinically exploited to treat rheumatoid arthritis (RA), yet the underlying mechanism for this effect remains largely unclear. AIM OF THE STUDY This study aimed to examine the beneficial effects of THH extract (THHE) against rheumatoid arthritis and its regulating role in differential metabolic pathways and potential targets. MATERIALS AND METHODS In the present study, the Lewis rat model with rheumatoid arthritis induced by adjuvant was established and administrated THHE for 14 days. Untargeted/targeted metabolomics analysis were used for determining the changes of differential metabolites, and molecular docking method was further developed to verify predicted targets and investigate the therapeutic mechanism of THH extract on RA. RESULTS The results showed that THH extract could obviously improve body weight, significantly decrease the joint index and swelling degree of the RA model rats to reduce damage in the joint. Meanwhile, THHE could significantly suppress the releases of IL-1α, IL-1β and MMP3, but also the expression levels of IL-4 and IL-10 and percentage of Treg cells were significantly improved, a result consistent with inhibitory effects on multiplication of macrophages, inflammatory cell infiltration and fibro genesis in the synovial tissues. Furthermore, 516 differential metabolites were identified by serum metabolic profiles analysis, including vitamin, organic acids and derivatives, lipids and lipid-like molecule, hormone, amino acids and derivatives, and other compounds, which targeted 47 metabolic pathways highly correlated with immunosuppression, such as citrate cycle (TCA cycle), sphingolipid metabolism, urea cycle, arachidonic acid metabolism and amino acid metabolism (such as Glutamine-Glutamate metabolism). Targeted metabolomics was used to verify that L-Glutamate and Glutamine changed significantly after THHE administration for 14 days, and many active ingredients of THHE could be successfully docked with glutamate dehydrogenase 2 (GLUD2). CONCLUSION This study indicated that the Glutamine-Glutamate/GABA cycle played essential regulation roles in protective effect of THHE on rat RA following adjuvant-induced damage, and GLUD2 as an attractive target also provides great potential for development of therapy agents for rheumatoid arthritis and autoimmune diseases with less unfavorable tolerability profile.
Collapse
Affiliation(s)
- Chengyan Long
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yang Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Sixing Huang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| |
Collapse
|