1
|
Sun X, Meng X, Piao Y, Dong S, Dong Q. METTL3 promotes the osteogenic differentiation of human periodontal ligament cells by increasing YAP activity via IGF2BP1 and YTHDF1-mediated m 6A modification. J Periodontal Res 2024; 59:1017-1030. [PMID: 38838034 DOI: 10.1111/jre.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
AIMS N6-Methyladenosine (m6A) has been confirmed to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament cells (hPDLCs) remains unclear. The present study aimed to verify the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in the osteogenic differentiation of hPDLCs. METHODS The METTL3, Runx2, Osx, and YAP mRNA expression was determined by qPCR. METTL3, RUNX2, OSX, YTHDF1, YAP, IGF2BP1, and eIF3a protein expression was measured by Western blotting and immunofluorescence assays. The levels of m6A modification were evaluated by methylated RNA immunoprecipitation (MeRIP) and dot blot analyses. MeRIP-seq and RNA-seq were used to screen potential candidate genes. Nucleic acid and protein interactions were detected by immunoprecipitation. Alizarin red staining was used to evaluate the osteogenic differentiation of hPDLCs. Gene transcription and promoter activities were assessed by luciferase reporter assays (n ≥ 3). RESULTS The expression of METTL3 and m6A modifications increased synchronously with the osteogenic differentiation of hPDLCs (p = .0016). YAP was a candidate gene identified by MeRIP-seq and RNA-seq, and its mRNA and protein expression levels were simultaneously increased. METTL3 increased the m6A methylated IGF2BP1-mediated stability of YAP mRNA (p = .0037), which in turn promoted osteogenic differentiation (p = .0147). Furthermore, METTL3 increased the translation efficiency of YAP by recruiting YTHDF1 and eIF3a to the translation initiation complex (p = .0154), thereby promoting the osteogenic differentiation of hPDLCs (p = .0012). CONCLUSION Our study revealed that METTL3-initiated m6A mRNA methylation promotes osteogenic differentiation of hPDLCs by increasing IGF2BP1-mediated YAP mRNA stability and recruiting YTHDF1 and eIF3a to the translation initiation complex to increase YAP mRNA translation. Our findings reveal the mechanism of METTL3-mediated m6A modification during hPDLC osteogenesis, providing a potential therapeutic target for periodontitis and alveolar bone defects.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiujiao Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Piao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
He H, Yang YH, Yang X, Huang Y. The growth factor multimodality on treating human dental mesenchymal stem cells: a systematic review. BMC Oral Health 2024; 24:290. [PMID: 38429689 PMCID: PMC10905837 DOI: 10.1186/s12903-024-04013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Ensuring the quantity, quality, and efficacy of human dental mesenchymal stem cells (MSCs) has become an urgent problem as their applications increase. Growth factors (GFs) have low toxicity, good biocompatibility, and regulate stem cell survival and differentiation. They bind to specific receptors on target cells, initiating signal transduction and triggering biological functions. So far, relatively few studies have been conducted to summarize the effect of different GFs on the application of dental MSCs. We have reviewed the literature from the past decade to examine the effectiveness and mechanism of applying one or multiple GFs to human dental MSCs. Our review is based on the premise that a single dental MSC cannot fulfill all applications and that different dental MSCs react differently to GFs. METHODS A search for published articles was carried out using the Web of Science core collection and PubMed. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. This review considered studies from 2014 to 2023 that examined the effects of GFs on human dental MSCs. The final selection of articles was made on the 15th of July 2023. RESULTS Three thousand eight hundred sixty-seven pieces of literature were gathered for this systematic review initially, only 56 of them were selected based on their focus on the effects of GFs during the application of human dental MSCs. Out of the 56, 32 literature pieces were focused on a single growth factor while 24 were focused on multiple growth factors. This study shows that GFs can regulate human dental MSCs through a multi-way processing manner. CONCLUSION Multimodal treatment of GFs can effectively regulate human dental MSCs, ensuring stem cell quality, quantity, and curative effects.
Collapse
Affiliation(s)
- Huiying He
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Yun-Hsuan Yang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Yang L, Wang H, Hao W, Li T, Fang H, Bai H, Yan P, Wei S. TGFβ3 regulates adipogenesis of bovine subcutaneous preadipocytes via typical Smad and atypical MAPK signaling pathways. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
7
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
8
|
[Effects of different crosslinking treatments on the properties of decellularized small intestinal submucosa porous scaffolds]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022. [PMID: 35701136 PMCID: PMC9197715 DOI: 10.19723/j.issn.1671-167x.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the effects of three different crosslinkers on the biocompatibility, physical and chemical properties of decellularized small intestinal submucosa (SIS) porous scaffolds. METHODS The SIS porous scaffolds were prepared by freeze-drying method and randomly divided into three groups, then crosslinked by glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide (EDC) and procyanidine (PA) respectively. To evaluate the physicochemical property of each sample in different groups, the following experiments were conducted. Macroscopic morphologies were observed and recorded. Microscopic morphologies of the scaffolds were observed using field emission scanning electron microscope (FESEM) and representative images were selected. Computer software (ImageJ) was used to calculate the pore size and porosity. The degree of crosslinking was determined by ninhydrin experiment. Collagenase degradation experiment was performed to assess the resistance of SIS scaffolds to enzyme degradation. To evaluate the mechanical properties, universal mechanical testing machine was used to determine the stress-strain curve and compression strength was calculated. Human bone marrow mesenchymal cells (hBMSCs) were cultured on the scaffolds after which cytotoxicity and cell proliferation were assessed. RESULTS All the scaffolds remained intact after different crosslinking treatments. The FESEM images showed uniformed interconnected micro structures of scaffolds in different groups. The pore size of EDC group[(161.90±13.44) μm] was significantly higher than GA group [(149.50±14.65) μm] and PA group[(140.10±12.06) μm] (P < 0.05). The porosity of PA group (79.62%±1.14%) was significantly lower than EDC group (85.11%±1.71%) and GA group (84.83%±1.89%) (P < 0.05). PA group showed the highest degree of crosslinking whereas the lowest swelling ratio. There was a significant difference in the swelling ratio of the three groups (P < 0.05). Regarding to the collagenase degradation experiment, the scaffolds in PA group showed a significantly lower weight loss rate than the other groups after 7 days degradation. The weight loss rates of GA group were significantly higher than those of the other groups on day 15, whereas the PA group had the lowest rate after 10 days and 15 days degradation. PA group showed better mechanical properties than the other two groups. More living cells could be seen in PA and EDC groups after live/dead cell staining. Additionally, the proliferation rate of hBMCSs was faster in PA and EDC groups than in GA group. CONCLUSION The scaffolds gained satisfying degree of crosslinking after three different crosslinking treatments. The samples after PA and EDC treatment had better physicochemical properties and biocompatibility compared with GA treatment. Crosslinking can be used as a promising and applicable method in the modification of SIS scaffolds.
Collapse
|
9
|
邓 艺, 张 一, 李 博, 王 梅, 唐 琳, 刘 玉. [Effects of different crosslinking treatments on the properties of decellularized small intestinal submucosa porous scaffolds]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:557-564. [PMID: 35701136 PMCID: PMC9197715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 08/30/2024]
Abstract
OBJECTIVE To compare the effects of three different crosslinkers on the biocompatibility, physical and chemical properties of decellularized small intestinal submucosa (SIS) porous scaffolds. METHODS The SIS porous scaffolds were prepared by freeze-drying method and randomly divided into three groups, then crosslinked by glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide (EDC) and procyanidine (PA) respectively. To evaluate the physicochemical property of each sample in different groups, the following experiments were conducted. Macroscopic morphologies were observed and recorded. Microscopic morphologies of the scaffolds were observed using field emission scanning electron microscope (FESEM) and representative images were selected. Computer software (ImageJ) was used to calculate the pore size and porosity. The degree of crosslinking was determined by ninhydrin experiment. Collagenase degradation experiment was performed to assess the resistance of SIS scaffolds to enzyme degradation. To evaluate the mechanical properties, universal mechanical testing machine was used to determine the stress-strain curve and compression strength was calculated. Human bone marrow mesenchymal cells (hBMSCs) were cultured on the scaffolds after which cytotoxicity and cell proliferation were assessed. RESULTS All the scaffolds remained intact after different crosslinking treatments. The FESEM images showed uniformed interconnected micro structures of scaffolds in different groups. The pore size of EDC group[(161.90±13.44) μm] was significantly higher than GA group [(149.50±14.65) μm] and PA group[(140.10±12.06) μm] (P < 0.05). The porosity of PA group (79.62%±1.14%) was significantly lower than EDC group (85.11%±1.71%) and GA group (84.83%±1.89%) (P < 0.05). PA group showed the highest degree of crosslinking whereas the lowest swelling ratio. There was a significant difference in the swelling ratio of the three groups (P < 0.05). Regarding to the collagenase degradation experiment, the scaffolds in PA group showed a significantly lower weight loss rate than the other groups after 7 days degradation. The weight loss rates of GA group were significantly higher than those of the other groups on day 15, whereas the PA group had the lowest rate after 10 days and 15 days degradation. PA group showed better mechanical properties than the other two groups. More living cells could be seen in PA and EDC groups after live/dead cell staining. Additionally, the proliferation rate of hBMCSs was faster in PA and EDC groups than in GA group. CONCLUSION The scaffolds gained satisfying degree of crosslinking after three different crosslinking treatments. The samples after PA and EDC treatment had better physicochemical properties and biocompatibility compared with GA treatment. Crosslinking can be used as a promising and applicable method in the modification of SIS scaffolds.
Collapse
Affiliation(s)
- 艺 邓
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 一 张
- 北京大学口腔医学院·口腔医院综合二科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry Ⅱ, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 博文 李
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 梅 王
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 琳 唐
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 玉华 刘
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
10
|
Yu F, Geng D, Kuang Z, Huang S, Cheng Y, Chen Y, Leng F, Bei Y, Zhao Y, Tang Q, Huang Y, Xiang Q. Sequentially releasing self-healing hydrogel fabricated with TGFβ3-microspheres and bFGF to facilitate rat alveolar bone defect repair. Asian J Pharm Sci 2022; 17:425-434. [PMID: 35782329 PMCID: PMC9237629 DOI: 10.1016/j.ajps.2022.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
Resorption and loss of alveolar bone leads to oral dysfunction and loss of natural or implant teeth. Biomimetic delivery of growth factors based on stem cell recruitment and osteogenic differentiation, as the key steps in natural alveolar bone regenerative process, has been an area of intense research in recent years. A mesoporous self-healing hydrogel (DFH) with basic fibroblast growth factor (bFGF) entrapment and transforming growth factor β3 (TGFβ3) - loaded chitosan microspheres (CMs) was developed. The formulation was optimized by multiple tests of self-healing, in-bottle inversion, SEM, rheological, swelling rate and in vitro degradation. In vitro tubule formation assays, cell migration assays, and osteogenic differentiation assays confirmed the ability of DFH to promote blood vessels, recruit stem cells, and promote osteogenic differentiation. The optimum DFH formula is 0.05 ml 4Arm-PEG-DF (20%) added to 1 ml CsGlu (2%) containing bFGF (80 ng) and TGFβ3-microspheres (5 mg). The results of in vitro release studied by Elisa kit, indicated an 95% release of bFGF in 7 d and long-term sustained release of TGFβ3. For alveolar defects rat models, the expression levels of CD29 and CD45, the bone volume fraction, trabecular number, and trabecular thickness of new bone monitored by Micro-CT in DFH treatment groups were significantly higher than others (*P < 0.05, vs Model). HE and Masson staining show the same results. In conclusion, DFH is a design of bionic alveolar remodelling microenvironment, that is in early time microvessels formed by bFGF provide nutritious to recruited endogenous stem cells, then TGFβ3 slowly released speed up the process of new bones formation to common facilitate rat alveolar defect repair. The DFH with higher regenerative efficiency dovetails nicely with great demand due to the requirement of complicated biological processes.
Collapse
Affiliation(s)
- Fenglin Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Dezhi Geng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Zhanpeng Kuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Shiyi Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Yating Cheng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Yini Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Fang Leng
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Qingxia Tang
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Farimani Z, Shamshiri AR, Asl Roosta H, Akbari S, Bohlouli M. Regenerative benefits of using growth factors in treatment of periodontal defects: A systematic review and meta-analysis with Trial Sequential Analysis on preclinical studies. J Tissue Eng Regen Med 2021; 15:964-997. [PMID: 34480421 DOI: 10.1002/term.3241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Abstract
The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010-December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm2 or percentage) were the investigated outcomes. The risk of bias of the included studies was assessed using the SYRCLE tool. In closing, there was a meta-analysis carried out on the outcomes of interest. Trial Sequential Analysis was also carried out to figure out the power of meta-analytic outcomes. From 1995 studies which were found in the initial search, 34 studies were included in this review, and 20 of them were selected for the meta-analysis. The eligible studies were categorized according to the morphology of the experimental periodontal defects as one-, two-, and three-wall intrabony defects; furcation defects, and recession-type defects. The most studied biomolecules were rhFGF-2, rhGDF-5, platelet-derived growth factor, bone morphogenetic protein-2, and enamel matrix derivative (EMD). Based on the meta-analysis findings, combined application of biomolecules with regenerative treatments could improve new bone and cementum formation near 1 mm when compared to the control groups in one, two and three-wall intrabony defect models (p < 0.001). In furcation grade II defect, the addition of biomolecules was observed to enhance bone area gain and cementum height regeneration up to almost 2 mm (p < 0.001). Trial Sequential Analysis results confirmed the significant effect in the aforementioned meta-analyses. In cases of the buccal recession model, the application of rhFGF-2 and rhGDF-5 decreased the dimension of epithelial attachments besides regenerative advantages on bone and cementum formation, but EMD deposition exerted no inhibitory effect on epithelial down-growth. Application of biologic modifiers especially FGF-2 and GDF-5, could positively improve the regeneration of periodontal tissues, particularly cementum and bone in animal models. Trial Sequential Analysis confirmed the results but the power of the evidences was high just in some subgroup meta-analyses, like bone and cementum regeneration in furcation grade II model and cementum regeneration in one-wall intrabony defects. The outcomes of this study can potentially endow clinicians with guidelines for the appropriate application of growth factors in periodontal regenerative therapies.
Collapse
Affiliation(s)
- Zeinab Farimani
- Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ahmad Reza Shamshiri
- Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoori Asl Roosta
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Akbari
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Iaquinta MR, Torreggiani E, Mazziotta C, Ruffini A, Sprio S, Tampieri A, Tognon M, Martini F, Mazzoni E. In Vitro Osteoinductivity Assay of Hydroxylapatite Scaffolds, Obtained with Biomorphic Transformation Processes, Assessed Using Human Adipose Stem Cell Cultures. Int J Mol Sci 2021; 22:ijms22137092. [PMID: 34209351 PMCID: PMC8267654 DOI: 10.3390/ijms22137092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/28/2022] Open
Abstract
In this study, the in vitro biocompatibility and osteoinductive ability of a recently developed biomorphic hydroxylapatite ceramic scaffold (B-HA) derived from transformation of wood structures were analyzed using human adipose stem cells (hASCs). Cell viability and metabolic activity were evaluated in hASCs, parental cells and in recombinant genetically engineered hASC-eGFP cells expressing the green fluorescence protein. B-HA osteoinductivity properties, such as differentially expressed genes (DEG) involved in the skeletal development pathway, osteocalcin (OCN) protein expression and mineral matrix deposition in hASCs, were evaluated. In vitro induction of osteoblastic genes, such as Alkaline phosphatase (ALPL), Bone gamma-carboxyglutamate (gla) protein (BGLAP), SMAD family member 3 (SMAD3), Sp7 transcription factor (SP7) and Transforming growth factor, beta 3 (TGFB3) and Tumor necrosis factor (ligand) superfamily, member 11 (TNFSF11)/Receptor activator of NF-κB (RANK) ligand (RANKL), involved in osteoclast differentiation, was undertaken in cells grown on B-HA. Chondrogenic transcription factor SRY (sex determining region Y)-box 9 (SOX9), tested up-regulated in hASCs grown on the B-HA scaffold. Gene expression enhancement in the skeletal development pathway was detected in hASCs using B-HA compared to sintered hydroxylapatite (S-HA). OCN protein expression and calcium deposition were increased in hASCs grown on B-HA in comparison with the control. This study demonstrates the biocompatibility of the novel biomorphic B-HA scaffold and its potential use in osteogenic differentiation for hASCs. Our data highlight the relevance of B-HA for bone regeneration purposes.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
| | - Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (S.S.); (A.T.)
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (S.S.); (A.T.)
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (S.S.); (A.T.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
- Correspondence: (M.T.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (M.T.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (M.R.I.); (E.T.); (C.M.); (E.M.)
| |
Collapse
|
14
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
15
|
Huang S, Yu F, Cheng Y, Li Y, Chen Y, Tang J, Bei Y, Tang Q, Zhao Y, Huang Y, Xiang Q. Transforming Growth Factor-β3/Recombinant Human-like Collagen/Chitosan Freeze-Dried Sponge Primed With Human Periodontal Ligament Stem Cells Promotes Bone Regeneration in Calvarial Defect Rats. Front Pharmacol 2021; 12:678322. [PMID: 33967817 PMCID: PMC8103166 DOI: 10.3389/fphar.2021.678322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with a skull defect are at risk of developing cerebrospinal fluid leakage and ascending bacterial meningitis at >10% per year. However, treatment with stem cells has brought great hope to large-area cranial defects. Having found that transforming growth factor (TGF)-β3 can promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), we designed a hybrid TGF-β3/recombinant human-like collagen recombinant human collagen/chitosan (CS) freeze-dried sponge (TRFS) loading hPDLSCs (TRFS-h) to repair skull defects in rats. CFS with 2% CS was selected based on the swelling degree, water absorption, and moisture retention. The CS freeze-dried sponge (CFS) formed a porous three-dimensional structure, as observed by scanning electron microscopy. In addition, cytotoxicity experiments and calcein-AM/PI staining showed that TRFS had a good cellular compatibility and could be degraded completely at 90 days in the implantation site. Furthermore, bone healing was evaluated using micro-computed tomography in rat skull defect models. The bone volume and bone volume fraction were higher in TRFS loaded with hPDLSCs (TRFS-h) group than in the controls (p < 0.01, vs. CFS or TRFS alone). The immunohistochemical results indicated that the expression of Runx2, BMP-2, and collagen-1 (COL Ⅰ) in cells surrounding bone defects in the experimental group was higher than those in the other groups (p < 0.01, vs. CFS or TRFS alone). Taken together, hPDLSCs could proliferate and undergo osteogenic differentiation in TRFS (p < 0.05), and TRFS-h accelerated bone repair in calvarial defect rats. Our research revealed that hPDLSCs could function as seeded cells for skull injury, and their osteogenic differentiation could be accelerated by TGF-β3. This represents an effective therapeutic strategy for restoring traumatic defects of the skull.
Collapse
Affiliation(s)
- Shiyi Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Yu Bei
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qingxia Tang
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Mazzoni E, Mazziotta C, Iaquinta MR, Lanzillotti C, Fortini F, D'Agostino A, Trevisiol L, Nocini R, Barbanti-Brodano G, Mescola A, Alessandrini A, Tognon M, Martini F. Enhanced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Front Cell Dev Biol 2021; 8:610570. [PMID: 33537303 PMCID: PMC7849836 DOI: 10.3389/fcell.2020.610570] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBMSCs) and their derivative enhanced green fluorescent protein (eGFP)-hBMSCs were employed to evaluate an innovative hybrid scaffold composed of granular hydroxylapatite and collagen hemostat (Coll/HA). The cellular morphology/cytoskeleton organization and cell viability were investigated by immunohistochemistry (IHC) and AlamarBlue metabolic assay, respectively. The expression of osteopontin and osteocalcin proteins was analyzed by IHC and ELISA, whereas osteogenic genes were investigated by quantitative PCR (Q-PCR). Cell morphology of eGFP-hBMSCs was indistinguishable from that of parental hBMSCs. The cytoskeleton architecture of hBMSCs grown on the scaffold appeared to be well organized, whereas its integrity remained uninfluenced by the scaffold during the time course. Metabolic activity measured in hBMSCs grown on a biomaterial was increased during the experiments, up to day 21 (p < 0.05). The biomaterial induced the matrix mineralization in hBMSCs. The scaffold favored the expression of osteogenic proteins, such as osteocalcin and osteopontin. In hBMSC cultures, the scaffold induced up-regulation in specific genes that are involved in ossification process (BMP2/3, SPP1, SMAD3, and SP7), whereas they showed an up-regulation of MMP9 and MMP10, which play a central role during the skeletal development. hBMSCs were induced to chondrogenic differentiation through up-regulation of COL2A1 gene. Our experiments suggest that the innovative scaffold tested herein provides a good microenvironment for hBMSC adhesion, viability, and osteoinduction. hBMSCs are an excellent in vitro cellular model to assay scaffolds, which can be employed for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | | | - Antonio D'Agostino
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Lorenzo Trevisiol
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Department of Surgical Odonto-Stomatological Sciences, University of Verona, Verona, Italy
| | - Giovanni Barbanti-Brodano
- Department of Oncologic and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Tognon
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
18
|
Sato T, Mello D, Vasconcellos L, Valente AJM, Borges A. Chitosan-Based Coacervate Polymers for Propolis Encapsulation: Release and Cytotoxicity Studies. Int J Mol Sci 2020; 21:E4561. [PMID: 32604927 PMCID: PMC7352910 DOI: 10.3390/ijms21124561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan-DNA (CS-DNA) and Chitosan-Pectin (CS-P) hydrogels were formulated as a sustained drug delivery carrier for drug delivery. For this, hydrogels were prepared by emulsion technique: mixing aqueous phase of the CS and DNA or P solution with benzyl alcohol using a high-performance dispersing instrument. Green Propolis (GP) was incorporated by imbibition: hydrogels were placed in GP aqueous solution (70 µg/mL) for 2 h. The specimens were freeze-dried and then characterized using different techniques. In vitro cell viability and morphology were also performed using the MG63 cell line. The presence of P was evidenced by the occurrence of a strong band at 1745 cm-1, also occurring in the blend. DNA and CS-DNA showed a strong band at 1650 cm-1, slightly shifted from the chitosan band. The sorption of GP induced a significant modification of the gel surface morphology and some phase separation occurs between chitosan and DNA. Drug release kinetics in water and in saliva follow a two-step mechanism. Significant biocompatibility revealed that these hydrogels were non-toxic and provided acceptable support for cell survival. Thus, the hydrogel complexation of chitosan with DNA and with Pectin provides favorable micro-environment for cell growth and is a viable alternative drug delivery system for Green Propolis.
Collapse
Affiliation(s)
- Tabata Sato
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, Sao Paulo State University, UNESP, Sao Paulo 12.245-700, Brazil;
| | - Daphne Mello
- Department of Bioscience and Buccal Diagnose, Institute of Science and Technology, Sao Paulo State University, UNESP, Sao Paulo 12.245-700, Brazil; (D.M.); (L.V.)
| | - Luana Vasconcellos
- Department of Bioscience and Buccal Diagnose, Institute of Science and Technology, Sao Paulo State University, UNESP, Sao Paulo 12.245-700, Brazil; (D.M.); (L.V.)
| | - Artur J. M. Valente
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal
| | - Alexandre Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, Sao Paulo State University, UNESP, Sao Paulo 12.245-700, Brazil;
| |
Collapse
|
19
|
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5:164-183. [PMID: 32083230 PMCID: PMC7016353 DOI: 10.1016/j.bioactmat.2020.01.012] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.
Collapse
Affiliation(s)
- Md. Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Nurus Sakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Taslim Ur Rashid
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Fiber and Polymer Science, North Carolina State University, Campus Box 7616, Raleigh, NC, 27695, United States
| |
Collapse
|