1
|
Peyronnel C, Kessler J, Bobillier-Chaumont Devaux S, Houdayer C, Tournier M, Chouk M, Wendling D, Martin H, Totoson P, Demougeot C. A treadmill exercise reduced cardiac fibrosis, inflammation and vulnerability to ischemia-reperfusion in rat pristane-induced arthritis. Life Sci 2024; 341:122503. [PMID: 38354974 DOI: 10.1016/j.lfs.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
AIMS To explore cardiac structural and functional parameters and myocardial sensitivity to ischemia in a rat model of chronic arthritis, pristane-induced arthritis (PIA), and to investigate the effects of a running exercise protocol on cardiac disorders related to rheumatoid arthritis (RA). MAIN METHODS 3 groups of male Dark Agouti rats were formed: Controls, PIA and PIA-Exercise. The PIA-Exercise group was subjected to an individualized treadmill running protocol during the remission phase. At acute and chronic phases of PIA, cardiac structure was analyzed by histology. Cardiac function was explored in isolated hearts to measure left ventricular developed pressure (LVDP), cardiac compliance and infarct size before and after ischemia/reperfusion. Cardiac inflammation was evaluated through VCAM-1 mRNA expression by RT-qPCR. Plasma irisin levels were measured by ELISA. KEY FINDINGS PIA rats exhibited myocardial hypertrophy fibrosis and inflammation at the 2 inflammatory phases of the model. At chronic phase only, LVDP and cardiac compliance were lower in PIA compared to controls. As compared to sedentary PIA, exercise did not change cardiac function but reduced fibrosis, inflammation, infarct size, and arthritis severity and increased irisin levels. Cardiac inflammation positively correlated with fibrosis, while irisin levels negatively correlated with cardiac inflammation and fibrosis. SIGNIFICANCE In the PIA model that recapitulated most cardiac disorders of RA, a daily program of treadmill running alleviated cardiac fibrosis and inflammation and improved resistance to ischemia. These data provide arguments to promote the practice of exercise in RA patients for cardiac diseases prevention.
Collapse
Affiliation(s)
- C Peyronnel
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France
| | - J Kessler
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France; Service de Rhumatologie, Centre Hospitalier Louis Pasteur, F-39100 Dole, France
| | | | - C Houdayer
- Université de Franche-Comté, INSERM, UMR LINC 1322, DImaCell, Dispositif d'Imagerie Cellulaire, Besançon F-25030, France
| | - M Tournier
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France
| | - M Chouk
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France; Service de Rhumatologie, CHU Jean Minjoz, F-25000 Besançon, France
| | - D Wendling
- Service de Rhumatologie, CHU Jean Minjoz, F-25000 Besançon, France; Université de Franche-Comté, EPILAB, F-25000 Besançon, France
| | - H Martin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France
| | - P Totoson
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France.
| | - C Demougeot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT 1098, F-25000 Besançon, France
| |
Collapse
|
2
|
Li H, Wu QY, Teng XH, Li ZP, Zhu MT, Gu CJ, Chen BJ, Xie QQ, LuO XJ. The pathogenesis and regulatory role of HIF-1 in rheumatoid arthritis. Cent Eur J Immunol 2024; 48:338-345. [PMID: 38558567 PMCID: PMC10976655 DOI: 10.5114/ceji.2023.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/31/2023] [Indexed: 04/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease that involves the overgrowth and inflammation of synovial tissue, leading to the degeneration and impairment of joints. In recent years, numerous studies have shown a close relationship between the hypoxic microenvironment in joints and the occurrence and progression of RA. The main cause of the pathological changes in RA is widely believed to be the abnormal expression of hypoxia-inducible factor-1 (HIF-1) in joints. This paper describes and illustrates the structure and primary functions of HIF-1 and explains the main regulatory methods of HIF-1, including the PHDs/HIF-1 α/pVHL pathway, factor-inhibiting HIF (FIH), regulation of inflammatory cytokines, and the NF-κB pathway. Furthermore, this paper discusses the mechanism of HIF-1 and its impact on inflammation, angiogenesis, and cartilage destruction in greater detail. We summarize previous research findings on the mechanism of HIF-1 and propose new potential treatments for RA based on the pathogenesis of HIF-1 in RA.
Collapse
Affiliation(s)
- Han Li
- Taizhou University, Taizhou, Zhejiang, China
| | - Qi-Yang Wu
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Zhi-Peng Li
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Chao-Jie Gu
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Qi-Qi Xie
- Taizhou University, Taizhou, Zhejiang, China
| | | |
Collapse
|
3
|
Payamipour S, Peeri M, Azarbayjani MA, Masrour FF. Voluntary wheel running from early adolescence reduces disease progression, and anxiety- and depression-related symptoms in an adult male mouse model of rheumatoid arthritis. J Neuroimmunol 2023; 385:578247. [PMID: 38000323 DOI: 10.1016/j.jneuroim.2023.578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that progressively destroys synovial joints and leads to chronic systemic inflammation. This autoimmune disorder is associated with increased anxiety- and depression-related symptoms, which reduces quality of life. Clinical and experimental evidence suggests that higher physical activity from early adolescence may prevent chronic diseases and reduce the risk of mental health problems in adulthood. This study aimed to assess whether voluntary wheel running from early adolescence can decrease clinical symptoms, anxiety- and depression-related behaviors in adult mice with rheumatoid arthritis. Adolescent male mice were exposed to voluntary wheel running until adulthood and got collagen-induced arthritis. We measured body weight, the thickness of the hind paw and knee joint (clinical signs), anxiety- and depression-related behaviors, serum testosterone, and cytokines (IFN-γ IL-1β, IL-6, TNF-α, IL-10). The findings showed that collagen-induced arthritis resulted in anxious-like behavior, increased anhedonia, elevated IL-6, IL-1β, TNF-α, and IFN-γ, and decreased testosterone levels in the serum of mice. However, no change was observed in behavioral despair. We found that higher physical activity from early adolescence significantly reduced the severity of clinical signs, anxiety- and anhedonia-like behaviors, and decreased behavioral despair in RA-induced mice. In addition, the running wheel exposure normalized RA-induced abnormalities in testosterone and inflammatory cytokines in mice. Altogether, this study suggests that higher physical activity from early adolescence may make mice less vulnerable or resistant to RA-induced clinical symptoms and anxiety- and depression-related behaviors by changing testosterone and inflammatory cytokines productions in adulthood.
Collapse
Affiliation(s)
- Sheida Payamipour
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
4
|
Harata S, Kasukawa Y, Nozaka K, Tsuchie H, Shoji R, Igarashi S, Kasama F, Oya K, Okamoto K, Miyakoshi N. Effects of bisphosphonates and treadmill exercise on bone and kidney in adenine-induced chronic kidney disease rats. J Bone Miner Metab 2023; 41:785-796. [PMID: 37897671 DOI: 10.1007/s00774-023-01471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION The increasing prevalence of osteoporosis and chronic kidney disease (CKD) due to the aging of society has highlighted the need for development of effective treatments for elderly patients. This study examined whether the combination of treadmill exercise therapy and alendronate (ALN) can improve bone mineral density (BMD) and bone strength without worsening renal function in adenine-induced CKD model rats. MATERIALS AND METHODS 8-week-old male Wistar rats (n = 70) were divided into experimental groups based on the treatment protocol, i.e., non-CKD (control), vehicle only (CKD), ALN only, exercise only, and combined ALN plus exercise. A 0.75% adenine diet was used to induce CKD. Groups were killed at either 20 or 30 weeks of age. Comprehensive assessments included serum and urine biochemistry tests, renal histology, bone histomorphometry, BMD measurement, micro-computed tomography examinations, and biomechanical testing. RESULTS Blood biochemistry tests, urine analyses and histological evaluations of the kidney demonstrated that ALN treatment did not worsen renal function or kidney fibrosis in moderate-stage CKD model rats. Both ALN and treadmill exercise significantly suppressed bone resorption (p < 0.05-p < 0.01). Moreover, ALN monotherapy and combined ALN and treadmill exercise significantly improved BMD of the lumbar spine and femur, bone microstructure, and trabecular bone strength (p < 0.05-p < 0.01). Treadmill exercise was also shown to decrease cortical porosity at the mid-diaphysis of the femur and improve kidney fibrosis. CONCLUSION The combination of ALN and treadmill exercise is effective in improving BMD, the microstructure of trabecular and cortical bone, and bone strength, without compromising renal function in adenine-induced CKD model rats.
Collapse
Affiliation(s)
- Shuntaro Harata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryo Shoji
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shun Igarashi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Fumihito Kasama
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Keita Oya
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kento Okamoto
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
5
|
González-Chávez SA, López-Loeza SM, Acosta-Jiménez S, Cuevas-Martínez R, Pacheco-Silva C, Chaparro-Barrera E, Pacheco-Tena C. Low-Intensity Physical Exercise Decreases Inflammation and Joint Damage in the Preclinical Phase of a Rheumatoid Arthritis Murine Model. Biomolecules 2023; 13:biom13030488. [PMID: 36979423 PMCID: PMC10046494 DOI: 10.3390/biom13030488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Lifestyle modifications in preclinical Rheumatoid Arthritis (RA) could delay the ongoing pathogenic immune processes and potentially prevent its onset. Physical exercise (PE) benefits RA patients; however, its impact in reducing the risk of developing RA has scarcely been studied. The objective was to describe the effects of low-intensity PE applied at the disease’s preclinical phase on the joints of DBA/1 mice with collagen-induced arthritis (CIA). Twelve mice with CIA were randomly distributed into two groups: the CIA-Ex group, which undertook treadmill PE, and the CIA-NoEx, which was not exercised. The effects of PE were evaluated through clinical, histological, transcriptomics, and immunodetection analyses in the mice’s hind paws. The CIA-Ex group showed lower joint inflammation and damage and a decreased expression of RA-related genes (Tnf Il2, Il10, Il12a, IL23a, and Tgfb1) and signaling pathways (Cytokines, Chemokines, JAK-STAT, MAPK, NF-kappa B, TNF, and TGF-beta). TNF-α expression was decreased by PE in the inflamed joints. Low-intensity PE in pre-arthritic CIA reduced the severity through joint down-expression of proinflammatory genes and proteins. Knowledge on the underlying mechanisms of PE in preclinical arthritis and its impact on reducing the risk of developing RA is still needed.
Collapse
|
6
|
González-Chávez SA, Pacheco-Tena C. Exercise-driven exacerbation of inflammation: contribution of animal models of rheumatoid arthritis and spondyloarthritis. Connect Tissue Res 2022; 63:425-442. [PMID: 35172652 DOI: 10.1080/03008207.2022.2036734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To describe the observations of studies that have explored the effects of exercise on inflammation and tissue remodeling in animal models of inflammatory arthropathies including Rheumatoid Arthritis and Spondyloarthritis. METHODS A search was performed at Pubmed, Scopus and Web of Science databases from 2010 to 2021. The selected articles were classified into those who reported positive and negative effects of exercise, and the characteristics of their experimental designs, including the animal model, the study groups, the exercise intervention and the evaluation techniques, were detailed. RESULTS Thirteen original articles that met the selection criteria were included. The effects of exercise on the joint biology of mice with inflammatory arthritis were controversial. Although exercise benefits have been observed in some experimental designs, the majority of them have shown that exercise leads to exacerbation of inflammation, tissue remodeling, and processes associated with arthritis such as oxidative stress and hypoxia. CONCLUSION Further research is necessary as the existing guidelines do not consider the negative effects of the exercise evidenced in animal models. The potential risks of exercise for patients should be considered.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| |
Collapse
|
7
|
Conflicting time-dependent effects of treadmill exercise on joint contracture after anterior cruciate ligament reconstruction in rats. Tissue Cell 2022; 77:101861. [DOI: 10.1016/j.tice.2022.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
8
|
CD81 inhibition with the cytoplasmic RNA vector producing anti-CD81 antibodies suppresses arthritis in a rat CIA model. Biochem Biophys Res Commun 2022; 604:22-29. [DOI: 10.1016/j.bbrc.2022.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
|
9
|
Ye H, Weng H, Xu Y, Wang L, Wang Q, Xu G. Effectiveness and safety of aerobic exercise for rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. BMC Sports Sci Med Rehabil 2022; 14:17. [PMID: 35123568 PMCID: PMC8818158 DOI: 10.1186/s13102-022-00408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) can cause severe physical impairment and a reduced quality of life, and there is limited evidence for any effective intervention. Aerobic exercise may be beneficial for improving symptoms. Therefore, the purpose of this meta-analysis was to evaluate the effectiveness and safety of aerobic exercise for rheumatoid arthritis patients. METHODS PubMed, The Cochrane Library, Web of Science, EMBASE, CNKI, WanFang Data and VIP databases were searched. Randomized controlled trials of the effectiveness and safety of aerobic exercise for rheumatoid arthritis were included. Risks of bias were assessed by two independent reviewers using the methods described in the RevMan 5.3, GRADEpro and the Cochrane Handbook. Meta-analyses were performed to investigate the effects of aerobic exercise on rheumatoid arthritis. RESULTS A total of 13 RCTs were included, including 967 rheumatoid arthritis patients. The Meta-analysis results showed that aerobic exercise can improve functional ability [MD = - 0.25, 95% CI (- 0.38, - 0.11), P = 0.0002], relieve pain [SMD = - 0.46, 95% CI (- 0.90, - 0.01), P = 0.04], increase aerobic capacity [MD = 2.41, 95% CI (1.36, 3.45), P < 0.00001] and improve the Sit to Stand test score[MD = 1.60, 95% CI (0.07, 3.13), P = 0.04] with statistically significant differences. CONCLUSION Generally, aerobic exercise is beneficial and safe for RA patients and has a certain alleviating effect on the disease, such as functional ability improvement, pain relief and aerobic capacity increase. Limited by the quantity and quality of the included studies, future research with higher-quality studies needs to be conducted to verify the above conclusions. TRIAL REGISTRATION PROPERO registration number: CRD42021242953.
Collapse
Affiliation(s)
- Hui Ye
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China
| | - Heng Weng
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China
| | - Yue Xu
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China
| | - Lulu Wang
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China
| | - Qing Wang
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China.
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, No. 138, Xianlin St., Box 064, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
10
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
|
11
|
Kaihara K, Nakagawa S, Arai Y, Inoue H, Tsuchida S, Fujii Y, Kamada Y, Kishida T, Mazda O, Takahashi K. Sustained Hypoxia Suppresses Joint Destruction in a Rat Model of Rheumatoid Arthritis via Negative Feedback of Hypoxia Inducible Factor-1α. Int J Mol Sci 2021; 22:ijms22083898. [PMID: 33918929 PMCID: PMC8068944 DOI: 10.3390/ijms22083898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Hypoxia inducible factor (HIF)-1α has been implicated in the pathogenesis of rheumatoid arthritis (RA). HIF-1α, which is expressed in hypoxia, is reversely suppressed in sustained hypoxia. Here, we investigated the inhibitory effect of hypoxia on arthritis by controlling HIF-1α. Rheumatoid fibroblast-like synoviocyte MH7A cells were cultured in a hypoxic incubator for up to 72 h to evaluate the expression of HIF-1. Furthermore, collagen-induced arthritis (CIA) model rats were maintained under 12% hypoxia in a hypoxic chamber for 28 days to evaluate the effect on arthritis. In MH7A cells, HIF-1α protein level increased at 3 h, peaked at 6 h, and subsequently decreased in a time-dependent manner. The transcription of pro-inflammatory cytokines increased at 1 h; however, they decreased after 3 h (p < 0.05). Deferoxamine-mediated activation of HIF-1α abolished the inhibitory effect of sustained hypoxia on pro-inflammatory cytokines. In the rat CIA model, the onset of joint swelling was delayed and arthritis was suppressed in the hypoxia group compared with the normoxia group (p < 0.05). Histologically, joint destruction was suppressed primarily in the cartilage. Thus, sustained hypoxia may represent a new safe, and potent therapeutic approach for high-risk patients with RA by suppressing HIF-1α expression.
Collapse
Affiliation(s)
- Kenta Kaihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5139; Fax: +81-75-261-5433
| | - Hiroaki Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| | - Yuta Fujii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| | - Yoichiro Kamada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (O.M.)
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (O.M.)
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (K.K.); (H.I.); (S.T.); (Y.F.); (Y.K.); (K.T.)
| |
Collapse
|
12
|
Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0. Int J Mol Sci 2020; 21:ijms21218125. [PMID: 33143215 PMCID: PMC7663604 DOI: 10.3390/ijms21218125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis has a high prevalence globally and includes over 100 types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. All types of arthritis share common features of disease, including monocyte infiltration, inflammation, synovial swelling, pannus formation, stiffness in the joints and articular cartilage destruction. The exact etiology of arthritis remains unclear, and no cure exists as of yet. Anti-inflammatory drugs (NSAIDs and corticosteroids) are commonly used in the treatment of arthritis. However, these drugs are associated with significant side effects, such as gastric bleeding and an increased risk for heart attack and other cardiovascular problems. It is therefore crucial that we continue to research the pathogenesis of arthritis and seek to discover novel modes of therapy. This editorial summarizes and discusses the themes of the 27 articles published in our Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0”, a continuation of our 2019 Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis”. These Special Issues detail important novel research discoveries that contribute to our current understanding of arthritis.
Collapse
|
13
|
Akagi T, Mukai T, Mito T, Kawahara K, Tsuji S, Fujita S, Uchida HA, Morita Y. Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int J Mol Sci 2020; 21:ijms21114145. [PMID: 32532031 PMCID: PMC7312645 DOI: 10.3390/ijms21114145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) is the main effector peptide of the renin-angiotensin system (RAS), which regulates the cardiovascular system. The RAS is reportedly also involved in bone metabolism. The upregulation of RAS components has been shown in arthritic synovial tissues, suggesting the potential involvement of Ang II in arthritis. Accordingly, in the present study, we investigated the role of Ang II in bone erosion and systemic bone loss in arthritis. Ang II was infused by osmotic pumps in tumor necrosis factor-transgenic (TNFtg) mice. Ang II infusion did not significantly affect the severity of clinical and histological inflammation, whereas bone erosion in the inflamed joints was significantly augmented. Ang II administration did not affect the bone mass of the tibia or vertebra. To suppress endogenous Ang II, Ang II type 1 receptor (AT1R)-deficient mice were crossed with TNFtg mice. Genetic deletion of AT1R did not significantly affect inflammation, bone erosion, or systemic bone loss. These results suggest that excessive systemic activation of the RAS can be a risk factor for progressive joint destruction. Our findings indicate an important implication for the pathogenesis of inflammatory bone destruction and for the clinical use of RAS inhibitors in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
- Correspondence: ; Tel.: +81-86-462-1111
| | - Takafumi Mito
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Kyoko Kawahara
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shoko Tsuji
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shunichi Fujita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0914, Japan;
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| |
Collapse
|